12.5 Division in polar form
You can probably guess what happens with division in polar form now – divide modulii
and subtract arguments. Again, check the details for yourself:
(^) (θ 1 )
(^) (θ 2 )=
cosθ 1 +jsinθ 1
cosθ 2 +jsinθ 2
cosθ 1 +jsinθ 1
cosθ 2 +jsinθ 2
×
cosθ 2 −jsinθ 2
cosθ 2 −jsinθ 2
=(cosθ 1 cosθ 2 +sinθ 1 sinθ 2 )+j(sinθ 1 cosθ 2 −sinθ 2 cosθ 1 )
(on using cos^2 θ 2 +sin^2 θ 2 = 1 )
=cos(θ 1 −θ 2 )+jsin(θ 1 −θ 2 )=^ (θ 1 −θ 2 )
Hence
r 1 (θ 1 )
r 2 (θ 2 )
r 1
r 2
(^) (θ 1 −θ 2 )
So, to divide in polar form:
- Divide modulii to obtain the modulus of the quotient
- Subtract arguments to obtain the argument of the quotient.
In symbols ∣
∣
∣
∣z 1
z 2∣
∣
∣
∣=|z 1 |
|z 2 |arg(
z 1
z 2)
=arg(z 1 )−arg(z 2 )Arg(
z 1
z 2)
=Argz 1 −Argz 2 + 2 kπ kan integerProblem 12.9
Work√
3 −j
1 −√
3 jin Cartesian and polar forms and compare the results.We already know from Problem 12.8 that
√
3 −j= 2(
−π
6)
and 1−√
3 j= 2(
−π
3)So in polar form
√
3 −j
1 −
√
3 j=2(
−π
6)2(
−π
3)=^(
−π
6+π
3)
=^(π
6)=cos(π
6)
+jsin(π
6)=√
3
2+1
2j