12.If|z 1 |=5, Argz 1 =π/3,|z 2 |=3, Argz 2 =π/4, find the Cartesian forms ofz 1 and
z 2 and the values of:
(i) |z 1 z 2 | (ii)∣
∣
∣
∣z 1
z 2∣
∣
∣
∣ (iii) |z2
1 |(iv) Arg(z 1 z 2 ) (v) Arg(
z 1
z 2)
(vi) Argz ̄ 113.Show that multiplication byjrotates a complex number through
π
2in the anticlock-wise direction and division byjrotates itπ
2in the clockwise direction.14.Ifz 1 = 3
(π
6)
, z 2 = 2(π
18)
, z 3 =^(π
3)find the polar form of:(i) z 1 z 2 (ii)z 1
z 2(iii) z 1 z 2 z 3(iv)z 2
z^23(v)z 2 z 3
z 1(vi)z^21 z 3
z 215.Evaluate the powers indicated by use of the polar form.
(i) ( 1 −j)^8 (ii) (√
3 +j)^6 (iii) ( 2 + 2 j)^416.Plot the complex numbers
(i) 1−j (ii) 2j (iii)√
3
2+1
2j (iv) − 3 jon the Argand diagram and put them in the formejθ.17.Express the following numbers in the forma+jb:
(i) ejπ/^3 (ii) e−jπ/^6 (iii) e−(^1 +jπ)/^3 (iv)ejπ/^3
j(v)e−jπ/^4
1 + 2 j(vi)e−jπ/^6
2 −j18.Use the power series forexwithx=jθto findejθin the formA+jBwhereAand
Bare real power series inθ. Hence show that:
ejθ=cosθ+jsinθUse this result to prove that(cosθ+jsinθ)n=cosnθ+jsinnθHence evaluate(
1
2+j√
3
2) 43