[− 123
011
− 102][ 2 − 4 − 1
− 111
1 − 2 − 1]=[− 100
0 − 10
00 − 1]
=−[ 100
010
001]=−IwhereIis called the 3× 3 unit matrix. It follows that if
A=[
− 123
011
− 102]and
B=[− 241
1 − 1 − 1
− 121](note the overall change of sign) then
AB=IYou can also check that
BA=IWe say in these circumstances thatBis theinverseofA– and then of courseAis the
inverse ofB. We will see how to find the inverse matrix in Section 13.6.
Problem 13.7
Evaluate
[
1 − 1
00][
12
12]The product is the 2×2 zero matrix
[
00
00]This is an example ofAB= 0 even though neitherAnorBis zero.
Exercises on 13.3
- If
[
x+y 3
− 1 x−y]
=[
2 X+Y
Y−X 1]findx,y,X,Y.