Problem 13.12
Find the determinant and adjoint of
A=
[− 123
011
− 102
]
and evaluateAAdjA
|A|=
∣
∣
∣
∣∣
− 123
011
− 102
∣
∣
∣
∣∣=−^1 (^2 )−^2 (^1 )+^3 (^1 )
=− 1
AdjA=
∣
∣∣
∣
11
02
∣
∣∣
∣ −
∣
∣∣
∣
01
− 12
∣
∣∣
∣
∣
∣∣
∣
01
− 10
∣
∣∣
∣
−
∣
∣
∣
∣
23
02
∣
∣
∣
∣
∣
∣
∣
∣
− 13
− 12
∣
∣
∣
∣ −
∣
∣
∣
∣
− 12
− 10
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
23
11
∣
∣
∣
∣ −
∣
∣
∣
∣
− 13
01
∣
∣
∣
∣
∣
∣
∣
∣
− 12
01
∣
∣
∣
∣
T
Note, for example, that the element−
∣
∣
∣
∣
− 12
− 10
∣
∣
∣
∣in the 2, 3 position of the matrix about to
be transposed is indeed the cofactor of the elementa 23 inAand check the other elements
similarly.
=
[ 2 − 11
− 41 − 2
− 11 − 1
]T
=
[ 2 − 4 − 1
− 111
1 − 2 − 1
]
We t h e n fi n d
AAdjA=
[− 123
011
− 102
][ 2 − 4 − 1
− 111
1 − 2 − 1
]
=
[− 100
0 − 10
00 − 1
]
=− 1
[ 100
010
001
]
=− 1 I
=|A|I
This is an example of the general result
A
AdjA
|A|
=I
which we will return to below.