Problem 13.13
Find, if possible, the inverse of each of the matrices
(i)A=
[
1 − 13
221
04 − 5
]
(ii)B=
[
2 − 11
203
1 − 10
]
(i) First check the determinant ofA:
A=
∣
∣
∣
∣
∣
1 − 13
221
04 − 5
∣
∣
∣
∣
∣
= 1
∣
∣
∣
∣
21
4 − 5
∣
∣
∣
∣−(−^1 )
∣
∣
∣
∣
21
0 − 5
∣
∣
∣
∣+^3
∣
∣
∣
∣
22
04
∣
∣
∣
∣
=− 10 − 4 + 2 (− 5 )− 0 × 1 + 3 ( 2 × 4 − 0 × 2 )
= 0
SoAissingular– its determinant is zero, and so its inverse does not exist.
(ii) Hoping for better luck withBwe have
|B|=
∣
∣
∣
∣
∣
2 − 11
203
1 − 10
∣
∣
∣
∣
∣
= 2 ( 3 )+(− 3 )+(− 2 )
= 1
SotheinverseofBexists and we are not wasting our time findingAdjB.
AdjB=
∣
∣
∣
∣
03
− 10
∣
∣
∣
∣ −
∣
∣
∣
∣
23
10
∣
∣
∣
∣
∣
∣
∣
∣
20
1 − 1
∣
∣
∣
∣
−
∣
∣
∣
∣
− 11
− 10
∣
∣
∣
∣
∣
∣
∣
∣
21
10
∣
∣
∣
∣ −
∣
∣
∣
∣
2 − 1
1 − 1
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
− 11
03
∣
∣
∣
∣ −
∣
∣
∣
∣
21
23
∣
∣
∣
∣
∣
∣
∣
∣
2 − 1
20
∣
∣
∣
∣
T
=
[ 33 − 2
− 1 − 11
− 3 − 4 − 2
]T
=
[ 3 − 1 − 3
3 − 1 − 4
− 212
]
As an exercise you might like to check thatBAdjB=|B|Iat this stage.
So we now have
B−^1 =
AdjB
|B|
=AdjB
=
[ 3 − 1 − 3
3 − 1 − 4
− 212
]