Understanding Engineering Mathematics

(やまだぃちぅ) #1
Problem 13.13
Find, if possible, the inverse of each of the matrices

(i)A=

[
1 − 13
221
04 − 5

]
(ii)B=

[
2 − 11
203
1 − 10

]

(i) First check the determinant ofA:

A=






1 − 13
221
04 − 5






= 1





21
4 − 5




∣−(−^1 )





21
0 − 5




∣+^3





22
04





=− 10 − 4 + 2 (− 5 )− 0 × 1 + 3 ( 2 × 4 − 0 × 2 )
= 0
SoAissingular– its determinant is zero, and so its inverse does not exist.

(ii) Hoping for better luck withBwe have


|B|=






2 − 11
203
1 − 10






= 2 ( 3 )+(− 3 )+(− 2 )
= 1
SotheinverseofBexists and we are not wasting our time findingAdjB.

AdjB=

      




03
− 10




∣ −





23
10









20
1 − 1










− 11
− 10









21
10




∣ −





2 − 1
1 − 1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

− 11
03




∣ −





21
23









2 − 1
20





      
T

=

[ 33 − 2
− 1 − 11
− 3 − 4 − 2

]T

=

[ 3 − 1 − 3
3 − 1 − 4
− 212

]

As an exercise you might like to check thatBAdjB=|B|Iat this stage.
So we now have

B−^1 =

AdjB
|B|

=AdjB

=

[ 3 − 1 − 3
3 − 1 − 4
− 212

]
Free download pdf