4.If
[
cosθ sinθ
−sinθ cosθ]
=
√
3
21
2−1
2√
3
2
determineθin the first quadrant, i.e. 0<θ< 90 °.5.Using the following matrices evaluate every possible sum and product of pairs of the
matrices (repetitions such asA^2 allowed):
A=[
2 − 1
30]
B=[ 3
− 1
4]
C=[− 20 ]D=[ 01 − 1
203
− 1 − 32]
E=[ 34
− 12
03]F=[
111
222]
G=[ 210 ]- A=
[ 2 − 1
30
− 11]
B=[ 32 − 1
01 2
11 1]
C=[ 42
31
0 − 1]D=[
21 4
30 − 1]u=[− 2
1
− 1]
v=[ 1
2
3]
w=[− 1
3
2]Find, where possible,(i) 3A+B (ii) 4A+ 2 C (iii) 3D− 2 A
(iv) 2AD+ 3 B (v) 3u− 2 v+B (vi) 2u+ 3 v−w
(vii) u− 2 w+Bv7.A,B,Care the matrices
A=[
31
− 12]
B=[
2 − 10
312]
C=[
112
− 223]Verify thatA(B+C)=AB+AC.Isittruethat(B+C)A=BA+CA?8.Evaluate
(i)∣
∣
∣
∣23
− 24∣
∣
∣
∣ (ii)∣
∣
∣
∣
∣102
345
567∣
∣
∣
∣
∣(iii)∣
∣
∣
∣
∣10 6
3415
5621∣
∣
∣
∣
∣(iv)∣
∣
∣
∣
∣100
235
413∣
∣
∣
∣
∣(v)∣
∣
∣
∣
∣023
− 204
− 3 − 40∣
∣
∣
∣
∣(vi)∣
∣
∣
∣cosθ sinθ
−sinθ cosθ∣
∣
∣
∣