Understanding Engineering Mathematics

(やまだぃちぅ) #1

4.If


[
cosθ sinθ
−sinθ cosθ

]
=






3
2

1
2


1
2


3
2





determineθin the first quadrant, i.e. 0<θ< 90 °.

5.Using the following matrices evaluate every possible sum and product of pairs of the
matrices (repetitions such asA^2 allowed):


A=

[
2 − 1
30

]
B=

[ 3
− 1
4

]
C=[− 20 ]

D=

[ 01 − 1
203
− 1 − 32

]
E=

[ 34
− 12
03

]

F=

[
111
222

]
G=[ 210 ]


  1. A=


[ 2 − 1
30
− 11

]
B=

[ 32 − 1
01 2
11 1

]
C=

[ 42
31
0 − 1

]

D=

[
21 4
30 − 1

]

u=

[− 2
1
− 1

]
v=

[ 1
2
3

]
w=

[− 1
3
2

]

Find, where possible,

(i) 3A+B (ii) 4A+ 2 C (iii) 3D− 2 A
(iv) 2AD+ 3 B (v) 3u− 2 v+B (vi) 2u+ 3 v−w
(vii) u− 2 w+Bv

7.A,B,Care the matrices


A=

[
31
− 12

]
B=

[
2 − 10
312

]
C=

[
112
− 223

]

Verify thatA(B+C)=AB+AC.Isittruethat(B+C)A=BA+CA?

8.Evaluate


(i)





23
− 24




∣ (ii)






102
345
567






(iii)






10 6
3415
5621






(iv)






100
235
413






(v)






023
− 204
− 3 − 40






(vi)





cosθ sinθ
−sinθ cosθ




Free download pdf