Understanding Engineering Mathematics

(やまだぃちぅ) #1
We only get non-trivial values for (x 0 ,y 0 ) if the determinant of coefficients is zero:




−λ 1
−ω^2 −λ




∣=





[
01
−ω^20

]
−λ

[
10
01

]∣∣

∣=^0

This is precisely the eigenvalue equation for thematrix of coefficientsof the original
system:
A=

[
01
−ω^20

]

Convert the equation

d^2 x
dt^2

+ 4 x= 0

to a first order system as described above.
Try a solution of the formx=x 0 eλt,y=y 0 eλtin this system and find the possible
values ofλthat will yield a non-trivial solution – they will in fact be complex. Hence
solve the equations and express the solutions without complex numbers.

13.10 Answers to reinforcement exercises



  1. (i)


[
2 − 1
12

][
x
y

]
=

[
− 1
0

]

(ii)

[ 3 − 12
223
− 30 − 1

][x
y
z

]
=

[ 1
2
− 3

]

(iii)

[
123
1 − 1 − 1

][a
b
c

]
=

[
1
3

]

(iv)

[ 4 − 2
33
1 − 1

][
u
v

]
=

[ 1
2
− 1

]

2.IfA=

[
− 123
402
− 112

]
B=

[
013
2 − 14
3 − 12

]

(i) 2,−1, 2, 0, 2,− 1

(ii) 11,− 4

(iii) (a)

[ − 21 − 3
23 − 8
− 11 5 − 2

]
(b)

[ 617
− 61016
303

]
(c)

[ 13 − 611
6216
8 − 45

]

(d)

[ 13 8
− 10 8 12
−98 11

]
Free download pdf