(vii)a,ar,ar^2 ,ar^3 , (divergent if|r|>1, limit=aifr=1, convergent to 0 if
|r|<1 and oscillating ifr=− 1 )(viii)−x^3
3,x^5
5,−x^7
7,x^9
9, (limit=0if|x|<1 and divergent otherwise)- (i)
1
2 n,( 0 ) (ii)n− 1
n,( 1 ) (iii)1
n(n+ 1 ),( 0 )(iv)2 n+ 1
2 n,( 1 ) (v)(− 1 )n
n!,( 0 )(vi)nxn
(n+ 1 )(n+ 2 ),(0if|x|= 1 ,divergent otherwise)(vii) (− 1 )nx^2 n+^1
2 n+ 1,(0if|x|= 1 , divergent otherwise)(viii)nx
n+ 1,(x)- (i) 0 (ii) 0 (iii) 0 (iv) 1 (v) 0 (vi) |x|
(vii)a
1 −rif|r|<1, divergent otherwise12.(i) 1 (ii) 0 (iii)
∣
∣
∣x
2∣
∣
∣13.−1.55
14.(i) 17.08 (ii) 1.45
- (i) Sn= 2 −
(
1
2)n− 1
,lim
n→∞
Sn= 2(ii) Sn=1
4[
3 −(
−1
3)n− 1 ]
,lim
n→∞
Sn=3
4(iii) Sn=n^2 ,limn→∞Sn=∞(iv) No simple expression forSn, but in fact lim
n→∞
Sn=e(v) No simple expression forSn, but in fact lim
n→∞
Sn=∞- (i) 6
[
1 −( 1
3)n]
(C) (ii) 2n(n− 4 ) (D) (iii) 2n−1(D)(iv)[
1 −(x
2)n]/(
1 −x
2)
(C for|x|<2)- (i) (− 1 )n (D) (ii) 1. 01 ( 1. 01 )n−^1 (D) (iii) (. 99 )n+^1 (C)
(iv)1
( 49 +n)(D) (v)107 −n
n(C) (vi)(− 1 )n+^1
10 (n+ 3 )(C)(vii) n^2(
3
4)n
(C) (viii)n
n+ 1(D) (ix) (. 2 )n−^1 (C)