Problem 15.8
By substitutingy=xvfind the general solution of the DEdy
dx=xYy
xWe note that
dy
dx= 1 +y
x=a function ofy
xand so this equation is homogeneous. So we substitutey=xvas suggested. We have
dy
dx=d(xv)
dx=v+xdv
dxBut
dy
dx= 1 +y
x= 1 +vSo
xdv
dx= 1or, separating the variables and integrating
∫
dv=∫
dx
x+C=lnx+CHence
v=
y
x=lnx+Cand therefore
y=xlnx+CxRemember to multiply theCbyxalso!
Exercise on 15.3
Solve the differential equations
(i) y′=sinx (ii) y′=y^2
(iii) y′=x^2 y (iv) xy′= 2 x+yIn (i), (ii), (iii) give the particular solutions satisfying the conditiony( 0 )=1. In (iv) give
the solution satisfyingy( 1 )=0.
Answer
(i) y=C−cosx,y= 2 −cosx (ii) y=−1
x+C,y=1
1 −x
(iii) y=Cexp(
x^3
3)
,y=exp(
x^3
3)
(iv) y= 2 xlnx+Cx,y= 2 xlnx