Understanding Engineering Mathematics

(やまだぃちぅ) #1

D.(i)


9
2

(ii)

13
6

(iii)

2
5

(iv) 14

1.3.6 Factorial and combinatorial notation


A. (i) 120 (ii) 3628800 (iii) 301


(iv) 220320 (v) 264 (vi) 210
(vii) 43545600 (viii) 70

B. (i) 36 (ii) 36 (iii) 330


(iv) 210 (v) 1 (vi) 210
(vii) 2400

C. 35


1.3.7 Powers and indices


A. (i) 2^5 (ii) 3^2 (iii) 2× 35 (iv) 3^4 (v) 2^9 (vi) 5^22 −^4


(vii) 2^233 (viii) 7× 3 −^2

B. (i) 3^12 (ii) 2^2 (iii) 2^335


(iv) 2^1434 (v) 3^5 (vi) − 2 −^23 −^4

(vii) 2^1335 (viii) 2−^23 =^34

D. (i) 3



2 (ii) 2


5 (iii) 2


2
(iv) 2


13 (v) 16


2(vi)6


11

(vii) 6


3 (viii) 3


7

E. (i)



7
7

(ii) −


3
3

(iii)


2 + 1

(iv)

4 +


10
6

(v)

3 +


5
2

(vi) 3


6 − 8

(vii)

1
4

( 2 + 3


2 ) (viii) 28


2

1.3.8 Decimal notation


A.(i) −0.5000 (ii) 3.5000 (iii) 0.6667


(iv) −0.2222 (v) 0.0000 (vi) 0.1250

B. (i)


1
4

(ii)

1
8

(iii)

1449
20
Free download pdf