Answers
- (i)
1
4(ex−e−^3 x) (ii) −1
4cos 2x−π
16sin 2x+1
4x+1
4(iii)2
3sinx−1
3sin 2x1
6e^3 x−3
2ex+x+4
315.7 Reinforcement
In all these exercises check your results by substituting back to the equation – the practice
will do you good!
1.Radioactive material decays at a rate proportional to the amount present. Construct
and solve a mathematical model giving the amount of material remaining after a
given time.
2.Solve the following differential equations subject to the conditions given:
(i) y′=xy( 0 )= 1
(ii) y′=cosxy(π)= 0
(iii) xy′=x^2 + 1 y( 1 )= 0
(iv) y′′= 4 y( 0 )= 1 y′( 0 )= 2
(v) y′′=x^2 − 1 y( 0 )= 0 y( 2 )= 1
(vi) y′′=cosxy( 0 )= 0 y(π)= 1
(vii) y′= 3 y^2 y( 0 )= 1
(viii) y′=secyy( 0 )=π3.Find the general solution of the differential equationsy′=f(x,y)wheref(x,y)is
given by:
(i) xy^2 (ii)y
x(iii) xsecy(iv) ex+y (v) 10− 2 y (vi) e^2 x−^3 y(vii)2 x
5 −siny(viii) ylnx (ix) (x−y)/x(x) y(x+ 2 y)/[x( 2 x+y)](xi)3(y^2 − 3 y+ 2 )4.Solve the equations:
(i) y′=e^2 x−y (ii) y′+ 2 y= 3 ex (iii) y′+xy=x^3
(iv) xy′= 3 y− 2 x (v) (x^2 − 1 )y′+ 2 y= 0
(vi) (x− 1 )y′= 3 x^2 −y (vii) xy′− 2 y=x^3 e−^2 x