In general, we have
an=
1
π
∫π
−π
f(t)cosntdtn= 0 , 1 , 2 ,...
bn=
1
π
∫π
−π
f(t)sinntdtn= 1 , 2 ,...
Problem 17.10
Verify the series for the square wave given in Section 17.9.
We have
f(t)=−A −π<t< 0
=A 0 <t<π
Since the function has period 2π, we can take its series to be:
f(t)=
a 0
2
+
∑∞
n= 1
ancosnt+
∑∞
n= 1
bnsinnt
Also, since the function isoddit can’t contain any even terms in the series, so we can
take allan=0, and write the series as
f(t)=
∑∞
n= 1
bnsinnt
We therefore have to find thebn.
Multiplying through by sinmtand integrating over [−π,π]wehave
∫π
−π
f(t)sinmtdt=
∫π
−π
∑∞
n= 1
bnsinntsinmtdt
=
∑∞
n= 1
bn
∫π
−π
sinntsinmtdt
=bm
∫π
−π
sin^2 mtdt
since ∫π
−π
sinntsinmtdt=0ifm=n
Now ∫π
−π
sin^2 mtdt=
1
2
∫π
−π
( 1 −cos 2mt)dt
=π