In general, we have
an=1
π∫π−πf(t)cosntdtn= 0 , 1 , 2 ,...bn=1
π∫π−πf(t)sinntdtn= 1 , 2 ,...Problem 17.10
Verify the series for the square wave given in Section 17.9.We have
f(t)=−A −π<t< 0
=A 0 <t<πSince the function has period 2π, we can take its series to be:
f(t)=a 0
2+∑∞n= 1ancosnt+∑∞n= 1bnsinntAlso, since the function isoddit can’t contain any even terms in the series, so we can
take allan=0, and write the series as
f(t)=∑∞n= 1bnsinntWe therefore have to find thebn.
Multiplying through by sinmtand integrating over [−π,π]wehave
∫π
−πf(t)sinmtdt=∫π−π∑∞n= 1bnsinntsinmtdt=∑∞n= 1bn∫π−πsinntsinmtdt=bm∫π−πsin^2 mtdtsince ∫π
−πsinntsinmtdt=0ifm=nNow ∫π
−πsin^2 mtdt=1
2∫π−π( 1 −cos 2mt)dt=π