The Econmist - USA (2021-11-06)

(Antfer) #1

70 Science&technology TheEconomistNovember6th 2021


originalemissionthusdealtwith,lessce­
mentisneededfora givenjob,lowering
overallemissionsstillfurther.McKinsey,a
consultancy,reckonsreverse calcination
could,atpresent,sequesterupto5%ofce­
ment’semissions.Asthetechnologyim­
provesit expectsthatmightriseto30%.
Several companiesare starting down
thisroute.CarbonCure,aCanadianfirm,
hasfittedequipmentwhichinjectsCO 2 in­
toready­mixedconcretetomorethan 400
plantsaroundtheworld.Itssystemhas
beenusedtoconstructbuildingsthatin­
cludea newcampusinArlington,Virginia,
forAmazon,anonlineretailer(andalsoa
shareholder inCarbonCure), andan as­
semblyplantforelectricvehicles,forGen­
eralMotors,inSpringHill,Tennessee.
AtpresenttheCO 2 usedbyCarbonCure
hasbeencapturedbyindustrial­gascom­
panies. Butfirmsare developing equip­
mentintendedtocollectthegasdirectly
fromcementkilns. And Calix,basedin
Sydney,Australia,isworkingonanelectri­
cally powered system which heats the
limestoneindirectly,fromtheoutsideof
thekilnratherthantheinside.Thaten­
ablespureCO 2 tobecapturedwithouthav­
ingtocleanupcombustiongasesfromfuel
burntinsidethekiln—so,iftheelectricity
itselfcamefromgreensources,theresult­
ingcementwouldbecompletelygreen.
Apilotplantusingthistechnologyhas
runsuccessfullyaspartofa EuropeanUn­
ionresearchprojectona siteinBelgium
operatedbyHeidelbergCement,a German
firmthatisoneofworld’sbiggestcement­
makers.A largerdemonstration plantis
duetoopenin2023,inHanover,tohelp
scaleupthetechnology.

Energisingrubbish
Another approach—less green, but still
betterthanusingfossilfuels—istosubsti­
tutesomeofthecoalburntinkilnswith
municipaland industrial waste. Several
firmsarealreadydoingthis.Cemex,a Mex­
icanbuilding­materialsgiant,forexample,
makesa kilnfuelcalledClimafueloutof
municipalwastethathasbeendenudedof

itsrecyclablesubstances.Thisisrich,in
theformofplantmaterial(“biomass”),in
carbonthathasrecentlybeenintheatmo­
sphere,andissimplyreturningthere,rath­
erthanhavingbeendugupasfossilfuel.
Upto60%ofthecoalusedbysomeofCe­
mex’sBritishcementplantshasbeenre­
placedwithClimafuel.
Companiesarealsolookingatwaysto
substitutesomeofthecementinconcrete
withothermaterials.Manyaddflyash,a
by­productofcoal­firedpowerplants,or
crushedslagfromtheblastfurnacesused
to make iron. But neither of these ap­
proachesissustainableinthelongrun.As
PeterHarrop,bossofidTechEx,a firmof
analystsinCambridge,England,andthe

co­authorofa newreportonthefutureof
concreteandcement,observes,coaluseis
dwindlingandsteelproductionaspiresto
movetonewer,cleanertechnologies.
ForDrHarrop,animportantpartofthe
answeristo “tech­up”concreteinways
whichmeanthatlessofit willbeneededto
do particular jobs. This means adding
thingslikesyntheticandnaturalfibres—or
evengraphene,a substancestrongerthan
steelthatconsistsofsingle­layersheetsof
carbon atoms. Only small amounts are
neededtoproducebeneficialresults.
Grapheneandotherreinforcementwill
leadtonew,ultra­high­performancecon­
cretes,whichDrHarropthinkswillbepar­
ticularly suitable for 3 d printing. This

The ins and outs of making cement
Manufacturing processes per one tonne of cement

Source:McKinsey

CO2 emissions
Kilograms

Energy used
Megajoules

Total: 3,895 MJ 95 kg

Cooler; cement mill;
logistics

Kiln and calcinator

Calcination
479

Fossil fuels
319

Quarry; crusher;
transport; raw mill



185

3,150

(^56099)


8
M
ostpeoplewhothinkaboutsuch
things agree that replacing fossil
fuels with renewable electricity, either
directly or indirectly, is the best way to
decarbonise industry, transport and the
heating and cooling of buildings. But
there are some holdout areas where this
is hard. Cement (as described in the
adjacent piece) is one. Aviation is anoth­
er, because batteries are too heavy and
hydrogen (which could be made using
renewable electricity) too bulky to do the
job easily. Hydrocarbon aviation fuels are
thus likely to be around for a while.
But such fuels need not be fossil. They
might be synthesised from the CO 2 ex­
haust of various industrial processes.
And a study just published in Nature, by
Aldo Steinfeld of ethZurich, a techno­
logical university in Switzerland, and his
colleagues, shows how they might liter­
ally be plucked from thin air.
Dr Steinfeld and his team devised and
tested a system that, in essence, reima­
gines the natural process of photosyn­
thesis. Plants take in atmospheric CO 2
and water and, with sunlight providing
the energy, turn those raw materials into
organic molecules. And that is exactly
what Dr Steinfeld has done.
The process has three stages. The first
absorbs CO 2 and water from the atmo­
sphere using a so­called direct­air­cap­
ture device made by Climeworks, a spin­
off of ethfounded by two of Dr Stein­
feld’s students that made the news re­
cently by opening a demonstration car­
bon­capture­and­storage system in
Iceland. There, however, the CO 2 is re­
acted with basalt rock to dispose of it. Dr
Steinfeld’s system makes use of it.
The second stage is the clever bit. It
employsconcentratedsunlighttoheat a
material called cerium oxide which,
when so heated, reacts with both CO 2 and
water. The reaction with CO 2 creates
carbon monoxide. The one with water
creates hydrogen. In both cases the by­
product is oxygen, which is vented into
the atmosphere. But a mixture of carbon
monoxide and hydrogen is a familiar one
to industrial chemists. It is called syngas,
and is widely used as a raw material to
make other things.
The third part of the process is there­
fore to turn the syngas into organic
molecules. For the hydrocarbons that
make up aviation fuel an industrial
chemist would normally turn to what is
known as the Fischer­Tropsch process.
For their demonstrator, the team chose
another route, which led to methanol
rather than hydrocarbons. But the gener­
al idea is the same.
The team’s demonstration rig, which
they installed on the roof of eth’s Mach­
ine Laboratory Building, had a typical
yield of 32ml of pure methanol per sev­
en­hour day—tiny, but a clear proof of
principle. A back­of­the­envelope calcu­
lation suggests that substituting the
world’s aviation­fuel market entirely in
this way would need 45,000km^2 of suit­
ably insolated land. That sounds a lot,
but is equivalent to about 0.5% of the
area of the Sahara Desert. 
Air­captured aviation fuel would
certainly need its path to market
smoothed by appropriate carbon taxes
on the fossil variety, and possibly other
measures. But Dr Steinfeld’s rig does
seem to have demonstrated a credible
and potentially scalable way to go about
making the stuff.
Greenaviation
Liquid sunshine
Away of combining atmospheric CO 2 and water to make aircraft fuel

Free download pdf