The Econmist - USA (2021-11-06)

(Antfer) #1

72 Science & technology The Economist November 6th 2021


builds up precise layers of material under
robotic control, and greatly reduces waste.
“Using much less cement is a very impor­
tant part of the answer,” he adds, especially
as cement production looks otherwise set
to double over the next 20 years.
Additives  can  also  make  concrete  last
longer  and  reduce  the  need  for  mainte­
nance. At the University of Michigan, Vic­
tor Li and his colleagues use synthetic and
natural fibres, along with CO 2 injection, to
produce a bendable concrete they call En­
gineered  Cementitious  Composite  (ecc).
The internal structure of this material was
inspired by nacre, a flexible material com­
monly  called  “mother  of  pearl”  that  coats
the  insides  of  the  shells  of  molluscs  such
as abalone and oysters.
Adding such flexibility to concrete lets
bridges  and  roads  cope  more  easily  with
heavy traffic, and improves the earthquake
resistance  of  tall  buildings.  eccdevelops
only tiny surface cracks when it ages. Dr Li
says  it  is  thus  better  at  keeping  water  out
and  preventing  corrosion  of  reinforcing
steel bars inside. Such corrosion can cause
reinforced­concrete structures to crumble
within a few years of their construction—
sometimes resulting in their collapse.

To zero and beyond
Substitution of materials could go still fur­
ther.  Solidia,  a  firm  in  New  Jersey,  makes
cement containing calcium silicates with a
higher ratio of silica to calcium oxide than
the  standard  “Portland”  variety.  This  has
two  consequences.  One  is  that  Solidia’s
process  requires  less  heat  (and  therefore
less fossil fuel) than conventional calcina­
tion,  and  so  releases  less  CO 2 in  the  first
place.  The  other  is  that,  when  mixed  into
concrete,  Solidia’s  silica­rich  silicates  can
be cured more rapidly than regular cement
by  using  captured  CO 2 instead  of  water.
Solidia  is  working  on  applications  for  its
cement  with  one  of  its  investors,  Lafarge­
Holcim, a Swiss building­supplies giant.
Taking all these developments into ac­
count,  how  green  could  concrete  get?  Dr
Fennell says it would be reasonably easy to
reduce  the  industry’s  CO 2 emissions  to
around 80% of present levels per tonne of
concrete  produced  by  better  energy  use
and  the  modification  of  materials.  But
companies could really pull the stops out if
they moved to kilns largely or entirely po­
wered by biomass, such as wood. The car­
bon in this would, until recently, have been
CO 2 in the air. If, after being turned back in­
to  that  gas  by  being  burned  in  the  kiln,  it
was stored away and not released, the con­
sequence,  as  new  trees  grew  to  replace
thoseconsumed,wouldbeanetflowof

carbonoutoftheatmosphere.
Thissortofsystem,calledbioenergy
withcarboncaptureandstorage(beccs), is
onewayclimatemodellersimaginepro­
vidingthe“negativeemissions”neededfor
net­zeroornet­negativeemissionstargets.
beccs­basedelectricitygenerationisoften
talkedof,butbeccsmightactuallybebet­
tersuitedtocement­making—becauseina
carbon­consciousworldtheCO 2 ­capturing
equipmentwillalreadybethere,dealing
withresultsofcalcination.Andif thathap­
pened,oneofthepariahsofglobalwarm­
ingmightthusredeemitselfbyhelpingal­
leviatethedamagebeingdonetotheplan­
et,andsoleavebehinda legacyasimpres­
siveinitswayasthatoftheRomans.n

Unimals

Balls, sticks and


the Baldwin effect


I


t mightsoundobviousthatifyou want
to improve a robot’s software, you should
improve its software. Agrim Gupta of Stan­
ford University, however, begs to differ. He
thinks you can also improve a robot’s soft­
ware  by  improving  its  hardware—that  is,
by  letting  the  hardware  adapt  itself  to  the
software’s capabilities. 
As they describe in Nature Communica-
tions, he and his colleagues have devised a
way  of  testing  this  idea.  In  doing  so,  they
have  brought  to  robotics  the  principles  of
evolution  by  natural  selection.  They  have
also  cast  the  spotlight  on  an  evolutionary
idea  that  dates  from  the  1890s,  but  which
has hitherto proved hard to demonstrate.
There  is  a  wrinkle.  The  team’s  robots,
which  they  dub  “unimals”,  are  not  things
of metal and plastic. Rather, they are soft­

ware  entities  that  interact  with  a  virtual
environment  in  the  way  that  metal­and­
plastic  devices  might  interact  with  a  real
one.  Unimals  are  pretty  simple,  having
spheres  for  heads  and  cylinders  for  limbs
(see  picture).  The  environments  through
which  they  roamed  were  also  simple,  and
came in three varieties: flat arenas, arenas
filled with hills, steps and rubble, and ones
that  had  the  complexities  of  the  second
sort, but with added props like cubes that
needed to be moved around.
To begin with, the unimals were given a
variety  of  randomly  assigned  shapes,  but
with  identical  software  running  each  of
them. That software was a piece of artificial
intelligence called a deep evolutionary re­
inforcement learning algorithm, or derl. 
Newly created unimals started in a vir­
tual boot camp, in which the derllearned
enough  about  the  world  to  face  the  chal­
lenges to come. They were then entered in­
to tournaments. In groups of four, Dr Gup­
ta put them through tests of agility, stabil­
ity and ability to manipulate objects. Each
group’s  winner  was  allowed  to  “breed”  by
spawning  a  daughter  with  one  mutation
(an extra limb for stability, perhaps, or ex­
tra rotation in a joint, for flexibility). This
daughter was substituted for the oldest un­
imal in the pool, assigned to a new group of
four, and the process repeated. 
Unimals were withdrawn from the fray
after  ten  generations  of  evolution,  and  Dr
Gupta  reckons  about  4,000  varieties  of
them  underwent  training.  The  team  were
surprised  by  the  diversity  of  shapes  that
evolved.  Some  had  arms  as  well  as  legs.
Others  had  only  legs.  There  were  bipeds,
tripeds and quadrupeds. Some moved like
lizards. Others resembled an octopus walk­
ing  on  land.  Crucially,  though,  the  re­
searchers  found  that  the  most  successful
unimals learned tasks in half the time that
their  oldest  ancestors  had  taken,  and  that
those which evolved in the toughest arenas
were the most successful of all. 
In this evolution of unimals’ morpholo­
gy to promote the ability to learn, Dr Gupta
sees  a  version  of  something  called  the
Baldwin  effect.  In  1896  James  Baldwin,  an
American psychologist, argued that minds
evolve  to  make  optimal  use  of  the  mor­
phologies  of  the  bodies  they  find  them­
selves  in.  What  Dr  Gupta  has  shown,
though in software rather than in the real,
biological world, is that the obverse can al­
so  be  true—changes  in  body  morphology
can  optimise  the  way  minds  (or,  at  least,
derls) work. Even though he held the soft­
ware  constant  from  generation  to  genera­
tion,  it  became  more  efficient  at  learning
as the unimals’ bodies evolved. 
Whether  that  discovery  can  be  turned
to account in the way robots are developed
remains  to  be  seen.Butitis  certainly,  in
the  jargon  beloved  ofsomebusinessfolk,
an out­of­the­box idea.n

A novel way to optimise robots

CorrectionAn eagle-eyed reader has spotted that
the picture illustrating one of last week’s Science
and technology stories, “No sex please, we’re
condors”, was of an Andean condor, not one of the
Californian variety. Sorry.
Free download pdf