108156.pdf

(backadmin) #1

  1. Forward and Futures Contracts 143


Proposition 6.6


If


N=(βV−a)(1 +rF)V(0)
f(0,T)

,

thenβV ̃=afor any given numbera.


Proof


We shall compute the beta coefficient from the definition:


βV ̃=Cov(KV ̃,KM)/σ^2 M

=Cov(KV,KM)/σ^2 M−

1

V(0)

Cov(N(f(1,T)−f(0,T)),KM)/σ^2 M,

whereKMis the return on the market portfolio andKV the return on the
portfolio without futures. Since Cov(f(0,T),KM) = 0 and covariance is linear
with respect to each argument,


Cov(N(f(1,T)−f(0,T)),KM)=NCov(f(1,T),KM).

Inserting the futures pricef(1,T)=M(1)(1 +rF)T−^1 ,wehave


Cov(f(1,T),KM)=(1+rF)T−^1 Cov(M(1),KM).

Again by the linearity of covariance in each argument


Cov(M(1),KM)=M(0)Cov(

M(1)−M(0)

M(0)

,KM)=M(0)σ^2 M.

Subsequent substitutions give


βV ̃=βV−

(1 +rF)T−^1 NM(0)
V(0)

=βV−N

f(0,T)
V(0)(1 +rF)

,

which implies the asserted property.


Corollary 6.7


Ifa=0,thenμV ̃=rF.


Example 6.4


Suppose that the index drops fromM(0) = 890 down toM(1) = 850,that is,
by 4.49% within one time step. Suppose further that the risk-free rate is 1%.

Free download pdf