Mathematics for Computer Science

(avery) #1

6.5. Induction in Computer Science 189


Problems for Section 6.1


Class Problems


Problem 6.1.
Prove that for all stringsr;s;t 2 A


.rs/tDr.st/:

Problem 6.2.
Thereversalof a string is the string written backwards, for example, rev.abcde/D
edcba.


(a)Give a simple recursive definition of rev.s/based on the recursive defini-
tion 6.1.1 ofs 2 Aand using the concatenation operation 6.1.3.


(b)Prove that
rev.st/Drev.t/rev.s/;

for all stringss;t 2 A.


Problem 6.3.
The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable
defined recursively as follows:
Base cases:
 The identity function, id.x/WWDxis an F18,


 any constant function is an F18,
 the sine function is an F18,
Constructor cases:
Iff;gare F18’s, then so are
1.fCg,fg, 2 g,


  1. the inverse functionf^1 ,

  2. the compositionfıg.
    (a)Prove that the function1=xis an F18.


Warning:Don’t confuse1=xDx^1 with the inverse id^1 of the identity function
id.x/. The inverse id^1 is equal to id.

Free download pdf