Mathematics for Computer Science

(avery) #1

Chapter 8 Number Theory276


Things get simpler when we rephrase Euler’s Theorem in terms ofZn.

Definition 8.10.2.LetZnbe the integers in.0::n/, that are relatively prime ton:^13


ZnWWDfk 2 .0::n/j gcd.k;n/D 1 g: (8.16)

Consequently,
.n/D

ˇ


ˇZn

ˇ


ˇ:


Theorem 8.10.3(Euler’s Theorem forZn).For allk 2 Zn,


k.n/D1 .Zn/: (8.17)

Theorem 8.10.3 will follow from two very easy lemmas.
Let’s start by observing thatZnis closed under multiplication inZn:

Lemma 8.10.4.Ifj;k 2 Zn, thenjnk 2 Zn.


There are lots of easy ways to prove this (see Problem 8.67).

Definition 8.10.5.For any elementkand subsetSofZn, let


kSWWDfknsjs 2 Sg:

Lemma 8.10.6.Ifk 2 ZnandSZn, then


jkSjDjSj:

Proof. Sincek 2 Zn, by Theorem 8.9.5 it is cancellable. Therefore,


ŒksDkt .Zn/ç implies sDt:

So mulitplying bykinZnmaps all the elements ofSto distinct elements ofkS,
which impliesSandkSare the same size. 


Corollary 8.10.7.Ifk 2 Zn
kZnDZn:


Proof. A product of elements inZnremains inZnby Lemma 8.10.4. So ifk 2 Zn,
thenkZnZn. But by Lemma 8.10.6,kZnandZnare the same size, so they must
be equal. 


(^13) Some other texts use the notationnforZn.

Free download pdf