Chapter 8 Number Theory292
On the other hand, the number 3 is still a “prime” even inZŒp
5ç. More pre-
cisely, a numberp 2 ZŒ
p
5çis calledirreducibleoverZŒp
5çiff whenxyDp
for somex;y 2 ZŒ
p
5ç, eitherxD ̇ 1 oryD ̇ 1.Claim.The numbers3;2C
p
5 , and 2 p
5 are irreducible overZŒp
5ç.In particular, this Claim implies that the number 9 factors into irreducibles over
ZŒ
p
5çin two different ways:3 3 D 9 D.2Cp
5/.2 p
5/: (8.32)SoZŒ
p
5çis an example of what is called anon-unique factorizationdomain.
To verify the Claim, we’ll appeal (without proof) to a familiar technical property
of complex numbers given in the following Lemma.
Definition.For a complex numbercDrCsiwherer;s 2 Randiis
p
1 , the
norm,jcj, ofcis
p
r^2 Cs^2.Lemma.Forc;d 2 C,
jcdjDjcjjdj:
(b)Prove thatjxj^2 ¤ 3 for allx 2 ZŒ
p
5ç.(c)Prove that ifx 2 ZŒp
5çandjxjD 1 , thenxD ̇ 1.(d)Prove that ifjxyjD 3 for somex;y 2 ZŒp
5ç, thenxD ̇ 1 oryD ̇ 1.Hint:jzj^22 Nforz 2 ZŒ
p
5ç.(e)Complete the proof of the Claim.Problems for Section 8.6
Practice Problems
Problem 8.26.
Prove that ifab .mod14/andab .mod5/, thenab .mod70/.
Class Problems
Problem 8.27. (a)Prove ifnis not divisible by 3, thenn^2 1 .mod3/.
(b)Show that ifnis odd, thenn^2 1 .mod8/.(c)Conclude that ifpis a prime greater than 3, thenp^2 1 is divisible by 24.