Science - USA (2021-10-29)

(Antfer) #1

anti-B220/CD45R (BD BioSciences; #553088;
1:100), and APC-conjugated anti-TCRb(BD
BioSciences; #553174; 1:100). Cells were stained
20 min on ice in the dark, after which 200ml of
DMEM was added and cells were analyzed via
a FACSCanto X (BD BioSciences). Cell counts
within 60 s were noted.


Transwell migration assay


To perform transwell migration assays using
peritoneal immune cells, 500mlofCMwas
added to a 24-well plate. A transwell inset
(3-mm pore size, Costar, #3415 or #3472) was
loaded with ~2×10^5 peritoneal immune cells
in 100ml of medium (matching the medium
used for CM production). Cells were allowed
to migrate for 12 hours. Then, the transwell
was carefully removed and the medium con-
taining suspension cells was collected. Attached
cells on the well bottom were washed twice
with PBS, trypsinized and scraped. Suspension
cells and attached cells were spun at 500gfor
10 min, resuspended and counted. Cell counts
were normalized to cell numbers of control
condition (CM cycling cells or CM EV) for each
mouse separately. For CXCL14 neutralization
experiments, CM from EV- or p21-OE cells was
added to a 24-well plate together with 20mg/ml
of goat anti-CXCL14 (R&D Systems, #AF866)
or 20mg/ml of goat anti-IgG (R&D Systems,
#AB-108-C) ( 73 ). Transwell migration assays
were performed as described above.


Injection of CM in wildtype mice


To determine the immune cell-eliciting po-
tential of CM, CM was generated as described
above except that culture medium with 0.5%
FBS was used. One milliliter of CM was aspi-
rated with a 25G needle and 3-ml syringe.
The needle was switched to 27G and CM was
slowly injected into the peritoneum of 8-
10-week-old C57BL/6 wildtype mice. Four days
post-injection, the peritoneal lavage was har-
vested and subjected to antibody staining and
flow cytometry as described above.


Statistical analysis


Prism software (GraphPad Software) was used
for statistical analyses. Unless otherwise stated,
Student’s two-tailed pairedttests (in MEFs and
HDFs) or Student’s two-tailed unpairedttests
(in IMR-90 cells and HUVECs) were used for
pairwise significance involving two groups. For
all experiments involving three or more groups,
one-way analysis of variance (ANOVA) with
Sidak’s correction or two-way ANOVA with
Sidak’s or Bonferroni correction for multiple
comparisons were performed. In these compar-
isons, the following denotes significance in all
figures:P<0.05,P<0.01, andP<0.001.


REFERENCESANDNOTES



  1. L. Galluzzi, T. Yamazaki, G. Kroemer, Linking cellular stress
    responses to systemic homeostasis.Nat. Rev. Mol. Cell Biol. 19 ,


731 – 745 (2018). doi:10.1038/s41580-018-0068-0;
pmid: 30305710


  1. E. Koren, Y. Fuchs, Modes of Regulated Cell Death in Cancer.
    Cancer Discov. 11 , 245–265 (2021). doi:10.1158/2159-8290.
    CD-20-0789; pmid: 33462123

  2. J. M. van Deursen, The role of senescent cells in ageing.
    Nature 509 , 439–446 (2014). doi:10.1038/nature13193;
    pmid: 24848057

  3. T. W. Kanget al., Senescence surveillance of pre-malignant
    hepatocytes limits liver cancer development.Nature
    479 , 547–551 (2011). doi:10.1038/nature10599;
    pmid: 22080947

  4. T. Eggertet al., Distinct Functions of Senescence-Associated
    Immune Responses in Liver Tumor Surveillance and Tumor
    Progression.Cancer Cell 30 , 533–547 (2016). doi:10.1016/
    j.ccell.2016.09.003; pmid: 27728804

  5. T. Kuilmanet al., Oncogene-induced senescence relayed by an
    interleukin-dependent inflammatory network.Cell 133 ,
    1019 – 1031 (2008). doi:10.1016/j.cell.2008.03.039;
    pmid: 18555778

  6. N. Tasdemiret al., BRD4 Connects Enhancer Remodeling
    to Senescence Immune Surveillance.Cancer Discov. 6 ,
    612 – 629 (2016). doi:10.1158/2159-8290.CD-16-0217;
    pmid: 27099234

  7. D. Muñoz-Espínet al., Programmed cell senescence during
    mammalian embryonic development.Cell 155 , 1104– 1118
    (2013). doi:10.1016/j.cell.2013.10.019; pmid: 24238962

  8. M. Storeret al., Senescence is a developmental mechanism
    that contributes to embryonic growth and patterning.
    Cell 155 , 1119–1130 (2013). doi:10.1016/j.cell.2013.10.041;
    pmid: 24238961

  9. A. Chicheet al., Injury-Induced Senescence Enables In Vivo
    Reprogramming in Skeletal Muscle.Cell Stem Cell 20 ,
    407 – 414.e4 (2017). doi:10.1016/j.stem.2016.11.020;
    pmid: 28017795

  10. D. J. Bakeret al., Naturally occurring p16(Ink4a)-positive cells
    shorten healthy lifespan.Nature 530 , 184–189 (2016).
    doi:10.1038/nature16932; pmid: 26840489

  11. D. J. Bakeret al., Clearance of p16Ink4a-positive senescent
    cells delays ageing-associated disorders.Nature 479 , 232– 236
    (2011). doi:10.1038/nature10600; pmid: 22048312

  12. B. G. Childset al., Senescent intimal foam cells are deleterious
    at all stages of atherosclerosis.Science 354 , 472–477 (2016).
    doi:10.1126/science.aaf6659; pmid: 27789842

  13. O. H. Jeonet al., Local clearance of senescent cells attenuates
    the development of post-traumatic osteoarthritis and creates
    a pro-regenerative environment.Nat. Med. 23 , 775– 781
    (2017). doi:10.1038/nm.4324; pmid: 28436958

  14. T. J. Bussianet al., Clearance of senescent glial cells prevents
    tau-dependent pathology and cognitive decline.Nature 562 ,
    578 – 582 (2018). doi:10.1038/s41586-018-0543-y;
    pmid: 30232451

  15. V. Krizhanovskyet al., Senescence of activated stellate cells
    limits liver fibrosis.Cell 134 , 657–667 (2008). doi:10.1016/
    j.cell.2008.06.049; pmid: 18724938

  16. J. P. Coppéet al., Senescence-associated secretory
    phenotypes reveal cell-nonautonomous functions of oncogenic
    RAS and the p53 tumor suppressor.PLOS Biol. 6 , 2853– 2868
    (2008). doi:10.1371/journal.pbio.0060301; pmid: 19053174

  17. A. Georgiliset al., PTBP1-Mediated Alternative Splicing
    Regulates the Inflammatory Secretome and the Pro-tumorigenic
    Effects of Senescent Cells.Cancer Cell 34 , 85–102.e9 (2018).
    doi:10.1016/j.ccell.2018.06.007; pmid: 29990503

  18. S. Omoriet al., Generation of a p16 Reporter Mouse and Its
    Use to Characterize and Target p16highCells In Vivo.Cell Metab.
    32 , 814–828.e6 (2020). doi:10.1016/j.cmet.2020.09.006;
    pmid: 32949498

  19. M. Hoareet al., NOTCH1 mediates a switch between
    two distinct secretomes during senescence.Nat. Cell Biol. 18 ,
    979 – 992 (2016). doi:10.1038/ncb3397; pmid: 27525720

  20. J. Lovénet al., Selective inhibition of tumor oncogenes by
    disruption of super-enhancers.Cell 153 , 320–334 (2013).
    doi:10.1016/j.cell.2013.03.036; pmid: 23582323

  21. D. Hniszet al., Super-enhancers in the control of cell identity
    and disease.Cell 155 , 934–947 (2013). doi:10.1016/
    j.cell.2013.09.053; pmid: 24119843

  22. W. A. Whyteet al., Master transcription factors and mediator
    establish super-enhancers at key cell identity genes.
    Cell 153 , 307–319 (2013). doi:10.1016/j.cell.2013.03.035;
    pmid: 23582322

  23. J. M. Dowenet al., Control of cell identity genes occurs in
    insulated neighborhoods in mammalian chromosomes.
    Cell 159 , 374–387 (2014). doi:10.1016/j.cell.2014.09.030;
    pmid: 25303531
    25. A. Chicaset al., Dissecting the unique role of the
    retinoblastoma tumor suppressor during cellular senescence.
    Cancer Cell 17 , 376–387 (2010). doi:10.1016/
    j.ccr.2010.01.023; pmid: 20385362
    26. N. Naraet al., Disruption of CXC motif chemokine ligand-14 in
    mice ameliorates obesity-induced insulin resistance.J. Biol.
    Chem. 282 , 30794–30803 (2007). doi:10.1074/jbc.
    M700412200; pmid: 17724031
    27. T. Hara, K. Tanegashima, Pleiotropic functions of the CXC-type
    chemokine CXCL14 in mammals.J. Biochem. 151 , 469– 476
    (2012). doi:10.1093/jb/mvs030; pmid: 22437940
    28. I. Kurthet al., Monocyte selectivity and tissue localization
    suggests a role for breast and kidney-expressed chemokine
    (BRAK) in macrophage development.J. Exp. Med. 194 ,
    855 – 862 (2001). doi:10.1084/jem.194.6.855; pmid: 11561000
    29. M. L. Santiago-Raberet al., Role of cyclin kinase inhibitor p21
    in systemic autoimmunity.J. Immunol. 167 , 4067– 4074
    (2001). doi:10.4049/jimmunol.167.7.4067; pmid: 11564828
    30. B. R. Lawsonet al., Deficiency of the cyclin kinase inhibitor p21
    (WAF-1/CIP-1) promotes apoptosis of activated/memory
    T cells and inhibits spontaneous systemic autoimmunity.
    J. Exp. Med. 199 , 547–557 (2004). doi:10.1084/jem.20031685;
    pmid: 14970181
    31. D. Balomenoset al., The cell cycle inhibitor p21 controls T-cell
    proliferation and sex-linked lupus development.Nat. Med. 6 ,
    171 – 176 (2000). doi:10.1038/72272; pmid: 10655105
    32. L. Zitvogel, A. Tesniere, G. Kroemer, Cancer despite
    immunosurveillance: Immunoselection and immunosubversion.
    Nat. Rev. Immunol. 6 , 715–727 (2006). doi:10.1038/nri1936;
    pmid: 16977338
    33. C. Muñoz-Fontela, A. Mandinova, S. A. Aaronson, S. W. Lee,
    Emerging roles of p53 and other tumour-suppressor genes in
    immune regulation.Nat. Rev. Immunol. 16 , 741–750 (2016).
    doi:10.1038/nri.2016.99; pmid: 27667712
    34. I. Sanidaset al., A Code of Mono-phosphorylation Modulates
    the Function of RB.Mol. Cell 73 , 985–1000.e6 (2019).
    doi:10.1016/j.molcel.2019.01.004; pmid: 30711375
    35. H. Braumülleret al., T-helper-1-cell cytokines drive cancer into
    senescence.Nature 494 , 361–365 (2013). doi:10.1038/
    nature11824; pmid: 23376950
    36. S. J. Kimet al., Macrophages are the primary effector cells in
    IL-7-induced arthritis.Cell. Mol. Immunol. 17 , 728–740 (2020).
    doi:10.1038/s41423-019-0235-z; pmid: 31197255
    37. S. Boulakirbaet al., IL-34 and CSF-1 display an equivalent
    macrophage differentiation ability but a different
    polarization potential.Sci. Rep. 8 , 256 (2018). doi:10.1038/
    s41598-017-18433-4; pmid: 29321503
    38. J. A. Westrich, D. W. Vermeer, P. L. Colbert, W. C. Spanos,
    D. Pyeon, The multifarious roles of the chemokine CXCL14 in
    cancer progression and immune responses.Mol. Carcinog. 59 ,
    794 – 806 (2020). doi:10.1002/mc.23188; pmid: 32212206
    39. H. J. Nam, J. M. van Deursen, Cyclin B2 and p53 control proper
    timing of centrosome separation.Nat. Cell Biol. 16 , 538– 549
    (2014). pmid: 24776885
    40. X. Yaoet al., Homology-mediated end joining-based targeted
    integration using CRISPR/Cas9.Cell Res. 27 , 801–814 (2017).
    doi:10.1038/cr.2017.76; pmid: 28524166
    41. J. R. Babuet al., Rae1 is an essential mitotic checkpoint
    regulator that cooperates with Bub3 to prevent chromosome
    missegregation.J. Cell Biol. 160 , 341–353 (2003).
    doi:10.1083/jcb.200211048; pmid: 12551952
    42. A. C. Flor, A. P. Doshi, S. J. Kron, Modulation of therapy-
    induced senescence by reactive lipid aldehydes.Cell Death
    Discov. 2 , 16045 (2016). doi:10.1038/cddiscovery.2016.45;
    pmid: 27453792
    43. M. Hamadaet al., Ran-dependent docking of importin-beta
    to RanBP2/Nup358 filaments is essential for protein import
    and cell viability.J. Cell Biol. 194 , 597–612 (2011).
    doi:10.1083/jcb.201102018; pmid: 21859863
    44. J. Zhonget al., Purification of nanogram-range
    immunoprecipitated DNA in ChIP-seq application.BMC
    Genomics 18 , 985 (2017). doi:10.1186/s12864-017-4371-5;
    pmid: 29268714
    45. B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, Ultrafast and
    memory-efficient alignment of short DNA sequences to the
    human genome.Genome Biol. 10 , R25 (2009). doi:10.1186/
    gb-2009-10-3-r25; pmid: 19261174
    46. Y. Zhanget al., Model-based analysis of ChIP-Seq (MACS).
    Genome Biol. 9 , R137 (2008). doi:10.1186/gb-2008-9-9-r137;
    pmid: 18798982
    47. M. I. Love, W. Huber, S. Anders, Moderated estimation of
    fold change and dispersion for RNA-seq data with DESeq2.
    Genome Biol. 15 , 550 (2014). doi:10.1186/s13059-014-0550-8;
    pmid: 25516281


Sturmlechneret al.,Science 374 , eabb3420 (2021) 29 October 2021 14 of 15


RESEARCH | RESEARCH ARTICLE

Free download pdf