5.3. METAL SEMICONDUCTOR JUNCTION: SCHOTTKY BARRIER 225
The current density contributed by these electrons is
Jz=−evzdN
L^3(5.3.11)
ifkz> 0 andEz>eVbi. Note that all values ofExandEyare allowed as they represent motion
in thex−yplane which is not constrained by the barrier in the+zdirection. Note that
(Ex−EC)=^2 k^2 x
2 m∗(5.3.12)
with similar relationships for(Ey−EC)and(Ez−EC). Also employing the condition(Ez−Ec)>
eVbiyields a minimum value of
kmin=√
eVbi(
2 m∗
^2)
(5.3.13)
Also,
vz=kz
m∗(5.3.14)
Therefore,
Jz=−e
(2π)^3∫+∞
−∞dkx∫+∞
−∞dky∫+∞
kminkz
m∗dkz·2 exp [−(Ex+Ey+Ez)/kBT]·exp [−(EC−EF)/kBT]exp(
EC
kBT)
=−
2 e
(2π)^3∫
x·
∫
y·
∫
zexp(
−
EC−EF
kBT)
(5.3.15)
where ∫
x=
∫
y=
∫∞
−∞exp(
^2 k^2 x
2 m∗kBT)
dkx=√
2 πm∗kBT
(5.3.16)
and ∫
z=
∫∞
kminexp(
−
^2 k^2 z
kBT)
·
kz
m∗·dkz (5.3.17)=
kBT
exp(
−^2 k^2 min/kBT)
=
kBT
exp(
−eVbi
kBT)
(5.3.18)
Therefore,
Jz=4 π
(2π)^3·em∗k^2 BT^2 exp(
−
(eVbi+(EC−EF))
kBT)
(5.3.19)
or
Jz=A∗·T^2 exp(
−eφB
kBT)
=Js→m(V=0) (5.3.20)