5.3. METAL SEMICONDUCTOR JUNCTION: SCHOTTKY BARRIER 225
The current density contributed by these electrons is
Jz=−evz
dN
L^3
(5.3.11)
ifkz> 0 andEz>eVbi. Note that all values ofExandEyare allowed as they represent motion
in thex−yplane which is not constrained by the barrier in the+zdirection. Note that
(Ex−EC)=
^2 k^2 x
2 m∗
(5.3.12)
with similar relationships for(Ey−EC)and(Ez−EC). Also employing the condition(Ez−Ec)>
eVbiyields a minimum value of
kmin=
√
eVbi
(
2 m∗
^2
)
(5.3.13)
Also,
vz=
kz
m∗
(5.3.14)
Therefore,
Jz=
−e
(2π)^3
∫+∞
−∞
dkx
∫+∞
−∞
dky
∫+∞
kmin
kz
m∗
dkz·
2 exp [−(Ex+Ey+Ez)/kBT]·exp [−(EC−EF)/kBT]exp
(
EC
kBT
)
=−
2 e
(2π)^3
∫
x
·
∫
y
·
∫
z
exp
(
−
EC−EF
kBT
)
(5.3.15)
where ∫
x
=
∫
y
=
∫∞
−∞
exp
(
^2 k^2 x
2 m∗kBT
)
dkx=
√
2 πm∗kBT
(5.3.16)
and ∫
z
=
∫∞
kmin
exp
(
−
^2 k^2 z
kBT
)
·
kz
m∗
·dkz (5.3.17)
=
kBT
exp
(
−^2 k^2 min/kBT
)
=
kBT
exp
(
−eVbi
kBT
)
(5.3.18)
Therefore,
Jz=
4 π
(2π)^3
·em∗k^2 BT^2 exp
(
−
(eVbi+(EC−EF))
kBT
)
(5.3.19)
or
Jz=A∗·T^2 exp
(
−eφB
kBT
)
=Js→m(V=0) (5.3.20)