SEMICONDUCTOR DEVICE PHYSICS AND DESIGN

(Greg DeLong) #1
5.3. METAL SEMICONDUCTOR JUNCTION: SCHOTTKY BARRIER 225

The current density contributed by these electrons is


Jz=−evz

dN
L^3

(5.3.11)

ifkz> 0 andEz>eVbi. Note that all values ofExandEyare allowed as they represent motion
in thex−yplane which is not constrained by the barrier in the+zdirection. Note that


(Ex−EC)=

^2 k^2 x
2 m∗

(5.3.12)

with similar relationships for(Ey−EC)and(Ez−EC). Also employing the condition(Ez−Ec)>
eVbiyields a minimum value of


kmin=


eVbi

(

2 m∗
^2

)

(5.3.13)

Also,


vz=

kz
m∗

(5.3.14)

Therefore,


Jz=

−e
(2π)^3

∫+∞

−∞

dkx

∫+∞

−∞

dky

∫+∞

kmin

kz
m∗

dkz·

2 exp [−(Ex+Ey+Ez)/kBT]·exp [−(EC−EF)/kBT]exp

(

EC

kBT

)

=−

2 e
(2π)^3


x

·


y

·


z

exp

(


EC−EF

kBT

)

(5.3.15)

where ∫


x

=


y

=

∫∞

−∞

exp

(

^2 k^2 x
2 m∗kBT

)

dkx=


2 πm∗kBT


(5.3.16)

and ∫


z

=

∫∞

kmin

exp

(


^2 k^2 z
kBT

)

·

kz
m∗

·dkz (5.3.17)

=

kBT


exp

(

−^2 k^2 min/kBT

)

=

kBT


exp

(

−eVbi
kBT

)

(5.3.18)

Therefore,


Jz=

4 π
(2π)^3

·em∗k^2 BT^2 exp

(


(eVbi+(EC−EF))
kBT

)

(5.3.19)

or


Jz=A∗·T^2 exp

(

−eφB
kBT

)

=Js→m(V=0) (5.3.20)
Free download pdf