Chapter 18 Deviation from the Mean626
.CC1/^2. So
ExŒC^2 çDp 12 C.1 p/ExŒ.CC1/^2 ç
DpC.1 p/
ExŒC^2 çC
2
p
C 1
DpC.1 p/ExŒC^2 çC.1 p/
2
p
C 1
; so
pExŒC^2 çDpC.1 p/
2
p
C 1
D
p^2 C.1 p/.2Cp/
p
and
ExŒC^2 çD
2 p
p^2
Combining this with (18.7) proves
Lemma 18.4.3.If failures occur with probabilitypindendently at each step, and
Cis the number of steps until the first failure^1 , then
VarŒCçD
1 p
p^2
: (18.8)
18.4.3 Dealing with Constants
It helps to know how to calculate the variance ofaRCb:
Theorem 18.4.4.LetRbe a random variable, andaa constant. Then
VarŒaRçDa^2 VarŒRç: (18.9)
Proof. Beginning with the definition of variance and repeatedly applying linearity
of expectation, we have:
VarŒaRçWWDExŒ.aR ExŒaRç/^2 ç
DExŒ.aR/^2 2aRExŒaRçCEx^2 ŒaRçç
DExŒ.aR/^2 ç ExŒ2aRExŒaRççCEx^2 ŒaRç
Da^2 ExŒR^2 ç 2 ExŒaRçExŒaRçCEx^2 ŒaRç
Da^2 ExŒR^2 ç a^2 Ex^2 ŒRç
Da^2