2.4 Multivariable Optimization with Equality Constraints 89subject to
2 π x 12 + 2 πx 1 x 2 =A 0 = 42 π
The Lagrange function is
L(x 1 , x 2 , λ) =πx^21 x 2 + λ( 2 π x 12 + 2 πx 1 x 2 −A 0 )andthe necessary conditions for the maximum off give
∂L
∂x 1= 2 πx 1 x 2 + 4 πλx 1 + 2 πλx 2 = 0 (E 1 )∂L
∂x 2= πx 12 + 2 πλx 1 = 0 (E 2 )∂L
∂λ= 2 π x 12 + 2 πx 1 x 2 −A 0 = 0 (E 3 )Equations(E 1 ) nd (Ea 2 ) ead tol
λ= −x 1 x 2
2 x 1 +x 2= −
1
2
x 1that is,
x 1 =^12 x 2 (E 4 )and Eqs.(E 3 ) nda (E 4 ) ive the desired solution asg
x∗ 1 =(
A 0
6 π) 1 / 2
, x∗ 2 =(
2 A 0
3 π) 1 / 2
, nda λ∗= −(
A 0
24 π) 1 / 2
This gives the maximum value offas
f∗=(
A^30
54 π) 1 / 2
IfA 0 = 42 π, the optimum solution becomes
x 1 ∗ = 2 , x 2 ∗= 4 , λ∗= − 1 , and f∗= 61 πTo see that this solution really corresponds to the maximum off, we apply the suffi-
ciency condition of Eq. (2.44). In this case
L 11 =
∂^2 L
∂x^21∣
∣
∣
∣
(X∗,λ∗)= 2 πx∗ 2 + 4 πλ∗= 4 πL 12 =
∂^2 L
∂x 1 ∂x 2∣
∣
∣
∣
(X∗,λ∗)=L 21 = 2 πx 1 ∗+ 2 πλ∗= 2 π