108 Classical Optimization Techniques
2.11 If a crank is at an angleθfrom dead center withθ=ωt, whereωis the angular velocity
andtis time, the distance of the piston from the end of its stroke(x)is given byx=r( 1 −cosθ )+r^2
4 l
( 1 −cos 2θ )whereris the length of the crank andlis the length of the connecting rod. Forr= 1
andl=5, find (a) the angular position of the crank at which the piston moves with
maximum velocity, and (b) the distance of the piston from the end of its stroke at that
instant.Determine whether each of the matrices in Problems 2.12–2.14 is positive definite, negative
definite, or indefinite by finding its eigenvalues.2.12 [A]=
3 1 − 1
1 3 − 1
− 1 −1 5
2.13 [B]=
4 2 − 4
2 4 − 2
− 4 −2 4
2.14 [C]=
− 1 − 1 − 1
− 1 − 2 − 2
− 1 − 2 − 3
Determine whether each of the matrices in Problems 2.15–2.17 is positive definite, negative
definite, or indefinite by evaluating the signs of its submatrices.2.15 [A]=
3 1 − 1
1 3 − 1
− 1 −1 5
2.16 [B]=
4 2 − 4
2 4 − 2
− 4 −2 4
2.17 [C]=
− 1 − 1 − 1
− 1 − 2 − 2
− 1 − 2 − 3
2.18 Express the functionf (x 1 , x 2 , x 3 )= −x^21 −x 22 + 2 x 1 x 2 −x 32 + 6 x 1 x 3 + 4 x 1 − 5 x 3 + 2in matrix form asf (X)=^12 XT[A]X+BTX+Cand determine whether the matrix [A] is positive definite, negative definite, or indefinite.
2.19 Determine whether the following matrix is positive or negative definite:[A]=
4 −3 0
−3 0 4
0 4 2