198 Linear Programming II: Additional Topics and Extensions
Step 1Write the system of equations (E 1 ) in tableau form:
Basic Variables
variables x 1 x 2 x 3 x 4 x 5 x 6 −f bi
x 3 − 1 0 1 0 0 0 0 − 2. 5
x 4 0 −1 0 1 0 0 0 − 6
x 5 − 2 −1 0 0 1 0 0 − 17 ←Minimum,
pivot row
Pivot element
x 6 − 1 −1 0 0 0 1 0 − 12
−f 20 16 0 0 0 0 1 0
Select the pivotal rowrsuch that
br= inm (bi< 0 )=b 3 = − 17
in this case. Hencer=3.
Step 2Select the pivotal columnsas
cs
−ars
= min
arj< 0
(
cj
−arj
)
Since
c 1
−a 31
=
20
2
= 10 ,
c 2
−a 32
=
16
1
= 16 , and s= 1
Step 3The pivot operation is carried ona 31 in the preceding table, and the result is
as follows:
Basic Variables
variables x 1 x 2 x 3 x 4 x 5 x 6 −f bi
x 3 0 12 1 0 −^12006
x 4 0 − 1 0 1 0 0 0 − 6 ←Minimum,
pivot row
Pivot element
x 1 1 12 0 0 −^1200172
x 6 0 −^1200 −^1210 −^72
−f 0 6 0 0 10 0 1 − 170
Step 4Since some of thebiare < 0 , the present solution is not optimum. Hence we
proceed to the next iteration.
Step 1The pivot row corresponding to minimum (bi< ) can be seen to be 2 in the 0
preceding table.