Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

206 Linear Programming II: Additional Topics and Extensions


X( 12 )= ointp S=

{

0

0

}

X( 22 )= ointp T=

{

1000

2000

}

X( 32 )= ointp U=

{

1000

0

}

Thus any point in the convex feasible sets defined by Eqs. (E 6 ) nd (Ea 7 ) anc
be represented, respectively, as

X 1 =μ 11

{

0

0

}

+μ 12

{

0

600

}

+μ 13

{

400

200

}

=

{

400 μ 13
600 μ 12 + 002 μ 13

}

with
μ 11 +μ 12 +μ 13 = 1 , 0 ≤μ 1 i≤ 1 , i= 1 , 2 , 3












(E 8 )

and

X 2 =μ 21

{

0

0

}

+μ 22

{

1000

2000

}

+μ 23

{

1000

0

}

=

{

1000 μ 22 + 0001 μ 23
2000 μ 22

}

with
μ 21 +μ 22 +μ 23 = 1 ; 0 ≤μ 2 i≤ 1 , i= 1 , 2 , 3






















(E 9 )

Step 2By substituting the relations of (E 8 ) nd (Ea 9 ) the problem stated in Eqs. (E, 5 )
can be rewritten as

Maximizef (μ 11 , μ 12 ,... , μ 23 )=( 12 )

{

400 μ 13
600 μ 12 + 002 μ 13

}

+( 23 )

{

1000 μ 22 + 0001 μ 23
2000 μ 22

}

= 800 μ 13 + 2001 μ 12 + 0008 μ 22 + 0002 μ 23

subject to
[
1 1
1 0

] {

400 μ 13
600 μ 12 + 002 μ 13

}

+

[

11

1 0

] {

1000 μ 22 + 0001 μ 23
2000 μ 22

}


{

1000

500

}

that is,

600 μ 12 + 006 μ 13 + 0003 μ 22 + 0001 μ 23 ≤ 0001

400 μ 13 + 0001 μ 22 + 0001 μ 23 ≤ 005
Free download pdf