210 Linear Programming II: Additional Topics and Extensions
SOLUTION Letx 1 , x 2 , x 3 , andx 4 denote the number of units of productsA, B, C,
andDproduced per day. Then the problem can be stated in standard form as follows:
Minimizef= − 45 x 1 − 001 x 2 − 03 x 3 − 05 x 4
subject to
7 x 1 + 01 x 2 + 4 x 3 + 9 x 4 ≤ 2001
3 x 1 + 04 x 2 +x 3 +x 4 ≤ 008
xi≥ 0 , i=1 to 4
By introducing the slack variablesx 5 ≥ and 0 x 6 ≥ , the problem can be stated in 0
canonical form and the simplex method can be applied. The computations are shown
in tableau form below:
Basic Variables Ratiobi/ais
variables x 1 x 2 x 3 x 4 x 5 x 6 −f bi forais> 0
x 5 7 10 4 9 1 0 0 1200 120
x 6 3 40 1 1 0 1 0 800 20←Smaller
one,x 6 leaves
Pivot element the basis
−f − 45 − 100 − 30 − 50 0 0 1 0
↑
Minimumcj< 0 ;x 2 enters the next basis
Result of pivot operation:
x 5 254 0 154 354 1 − 41 0 1000^400035 ←Smaller
one,x 5 leaves
Pivot element the basis
x 2 403 1 401 401 0 401 0 20 800
−f −^7520 −^552 −^9520 −^52 1 2000
↑
Minimumcj<0,x 4 enters the basis
Result of pivot operation:
x 4 57 0 37 1 354 − 351 0 4 , 35000 8003 ←Smaller
one,x 4 leaves
Pivot element the basis
x 2 352 1 701 0 − 3501 3509 0 1207 1200
−f −^2570 −^507038787152 , 7000
↑
Minimumcj<0,x 3 enters the basis