212 Linear Programming II: Additional Topics and Extensions
If the variables are not renumbered, Eq. (4.36) will be applicable fori=3 and
2 in the present problem withb 3 = 300 andb 2 = 00. From Eqs. (E 2 1 ) to (E 5 ) of
Example 4.5, the left-hand sides of Eq. (4.36) become
x 3 +β 33 b 3 +β 32 b 2 =^8003 + 154 00 ( 3 )− 151 ( 002 )=^500015
x 2 +β 23 b 3 +β 22 b 2 =^403 − 1501 00 ( 3 )+ 752 ( 002 )=^2500150
Since both these values are≥ 0 , the original optimal basisBremains optimal even
with the new values ofbi. The new values of the (optimal) basic variables are given
by Eq. (4.38) as
X′B=
{
x′ 3
x′ 2
}
=XB+XB=XB+B−^1 b
=
{ 800
3
40
3
}
+
[ 4
15 −
1
15
− 1501 752
]{
300
200
}
=
{ 1000
3
50
3
}
and the optimum value of the objective function by Eq. (4.39) as
fm′in=fmin+ f=fmin+cTBXB= −
28 , 000
3
+(− 30 − 100 )
{ 200
3
10
3
}
=−
35 , 000
3
Thus the new profit will be $35,000/3.
4.5.2 Changes in the Cost Coefficientscj
The problem here is to find the effect of changing the cost coefficients fromcj to
cj+ cjon the optimal solution obtained withcj. The relative cost coefficients cor-
responding to the nonbasic variables,xm+ 1 , xm+ 2 ,... , xnare given by Eq. (4.10):
cj=cj−πTAj=cj−
∑m
i= 1
πiaij, j=m+ 1 ,m+ 2 ,... , n (4.40)
where the simplex multipliersπiare related to the cost coefficients of the basic variables
by the relation
πT=cTBB−^1
that is,
πi=
∑m
k= 1
ckβki, i= 1 , 2 ,·· ·, m (4.41)
From Eqs. (4.40) and (4.41), we obtain
cj=cj−
∑m
i= 1
aij
(m
∑
k= 1
ckβki
)
=cj−
∑m
k= 1
ck
(m
∑
i= 1
aijβki
)
,
i=m+ 1 ,m+ 2 ,... , n (4.42)