230 Linear Programming II: Additional Topics and Extensions
reduces to a LP problem. The solution of the quadratic programming problem stated
in Eqs. (4.72) to (4.74) can be obtained by using the Lagrange multiplier technique.
By introducing the slack variablessi^2 , i = 1 , 2 ,... , m, in Eqs. (4.73) and the surplus
variablestj^2 , j = 1 , 2 ,... , n, in Eqs. (4.74), the quadratic programming problem can
be written as
Minimizef (X)=CTX+^12 XTDX (4.72)
subject to the equality constraints
ATiX+si^2 =bi, i= 1 , 2 ,... , m (4.75)
−xj+tj^2 = 0 , j= 1 , 2 ,... , n (4.76)
where
Ai=
ai 1
ai 2
..
.
ain
The Lagrange function can be written as
L(X,S,T,λ,θ)=CTX+^12 XTDX+
∑m
i= 1
λi(ATiX+si^2 −bi)
+
∑n
j= 1
θj(−xj+tj^2 ) (4.77)
The necessary conditions for the stationariness ofLgive
∂L
∂xj
=cj+
∑n
i= 1
dijxi+
∑m
i= 1
λiaij−θj= 0 , j= 1 , 2 ,... , n (4.78)
∂L
∂si
= 2 λisi= 0 , i= 1 , 2 ,... , m (4.79)
∂L
∂tj
= 2 θjtj= 0 , j= 1 , 2 ,... , n (4.80)
∂L
∂λi
=ATiX+si^2 −bi= 0 , i= 1 , 2 ,... , m (4.81)
∂L
∂θj
= −xj+tj^2 = 0 , j= 1 , 2 ,... , n (4.82)
By defining a set of new variablesYias
Yi=si^2 ≥ 0 , i= 1 , 2 ,... , m (4.83)
Equations (4.81) can be written as
ATiX−bi= −si^2 = −Yi, i= 1 , 2 ,... , m (4.84)