240 Linear Programming II: Additional Topics and Extensions
4.2 Maximizef=^15 x 1 +^6 x 2 +^9 x 3 +^2 x 4
subject to
10 x 1 + 5 x 2 + 25 x 3 + 3 x 4 ≤ 50
12 x 1 + 4 x 2 + 12 x 3 +x 4 ≤ 48
7 x 1 +x 4 ≤ 35
xi≥ 0 , i=1 to 4
4.3 Minimizef=^2 x 1 +^3 x 2 +^2 x 3 −x 4 +x 5
subject to
3 x 1 − 3 x 2 + 4 x 3 + 2 x 4 −x 5 = 0
x 1 +x 2 +x 3 + 3 x 4 +x 5 = 2
xi≥ 0 , i= 1 , 2 ,... , 5
4.4 Discuss the relationships between the regular simplex method and the revised simplex
method.
4.5 Solve the following LP problem graphically and by the revised simplex method:
Maximizef=x 2
subject to
−x 1 +x 2 ≤ 0
− 2 x 1 − 3 x 2 ≤ 6
x 1 , x 2 unrestricted in sign
4.6 Consider the following LP problem:
Minimizef= 3 x 1 +x 3 + 2 x 5
subject to
x 1 +x 3 −x 4 +x 5 = − 1
x 2 − 2 x 3 + 3 x 4 + 2 x 5 = − 2
xi≥ 0 , i=1 to 5
Solve this problem using the dual simplex method.
4.7 Maximizef=^4 x 1 +^2 x 2
subject to
x 1 − 2 x 2 ≥ 2
x 1 + 2 x 2 = 8