288 Nonlinear Programming I: One-Dimensional Minimization Methods
Example 5.12 Find the minimum of the function
f (λ)= 0. 65 −
0. 75
1 +λ^2
− 0. 65 λtan−^1
1
λ
using the Newton–Raphson method with the starting pointλ 1 = 0. 1. Useε= 0 .01 in
Eq. (5.66) for checking the convergence.
SOLUTION The first and second derivatives of the functionf (λ)are given by
f′(λ)=
1. 5 λ
( 1 +λ^2 )^2
+
0. 65 λ
1 +λ^2
− 0. 6 5 tan−^1
1
λ
f′′(λ)=
1. 5 ( 1 − 3 λ^2 )
( 1 +λ^2 )^3
+
0. 65 ( 1 −λ^2 )
( 1 +λ^2 )^2
+
0. 65
1 +λ^2
=
2. 8 − 3. 2 λ^2
( 1 +λ^2 )^3
Iteration 1
λ 1 = 0. 1 , f (λ 1 ) =− 0. 188197 , f′(λ 1 ) =− 0. 744832 , f′′(λ 1 ) = 2. 68659
λ 2 =λ 1 −
f′(λ 1 )
f′′(λ 1 )
= 0. 377241
Convergence check:|f′(λ 2 ) = |−| 0. 138230 |>ε.
Iteration 2
f (λ 2 )=− 0. 303279 , f′(λ 2 ) =− 0. 138230 , f′′(λ 2 ) = 1. 57296
λ 3 =λ 2 −
f′(λ 2 )
f′′(λ 2 )
= 0. 465119
Convergence check:|f′(λ 3 ) = |−| 0. 0179078 |>ε.
Iteration 3
f (λ 3 )=− 0. 309881 , f′(λ 3 ) =− 0. 0179078 , f′′(λ 3 ) = 1. 17126
λ 4 =λ 3 −
f′(λ 3 )
f′′(λ 3 )
= 0. 480409
Convergence check:|f′(λ 4 ) = |−| 0. 0005033 |< ε.
Since the process has converged, the optimum solution is taken asλ∗≈λ 4 =
0. 4 80409.
5.12.2 Quasi-Newton Method
If the function being minimizedf (λ)is not available in closed form or is difficult to
differentiate, the derivativesf′(λ) andf′′(λ) n Eq. (5.65) can be approximated by thei