6.6 Powell’s Method 327
Asdf/dλ=0 atλ∗=^12 , we haveX 2 =X 1 +λ∗S 2 =
{
0
0. 5
}
.
Next we minimizefalongS 1 =
{ 1
0
}
fromX 2 =
{ 0. 5
0. 0
}
.Since
f 2 = f(X 2 ) =f( 0. 0 , 0. 5 )= − 0. 25
f+ =f(X 2 +εS 1 ) =f( 0. 01 , 0. 50 )= − 0. 2298 >f 2
f−= f(X 2 −εS 1 ) =f(− 0. 01 , 0. 50 )= − 0. 2698
fdecreases along−S 1. As f(X 2 −λS 1 ) =f(−λ, 0. 50 )= 2 λ^2 − 2 λ− 0. 2 5,df/dλ=
0 atλ∗=^12. HenceX 3 =X 2 −λ∗S 1 =
{− 0. 5
0. 5
}
.
Now we minimizefalongS 2 =
{ 0
1
}
fromX 3 =
{− 0. 5
0. 5
}
.Asf 3 = f(X 3 ) =− 0 .75,
f+ =f(X 3 +εS 2 ) =f(− 0. 5 , 0. 51 )= − 0. 7599 < f 3 , f decreases along+S 2 direc-
tion. Since
f (X 3 +λS 2 )=f(− 0. 5 , 0. 5 +λ)=λ^2 − λ− 0. 75 ,
df
dλ
=0 at λ∗=
1
2
This gives
X 4 =X 3 +λ∗S 2 =
{
− 0. 5
1. 0
}
Cycle 2: Pattern Search
Now we generate the first pattern direction as
S(p^1 )=X 4 −X 2 =
{
−^12
1
}
−
{
0
1
2
}
=
{
− 0. 5
0. 5
}
and minimizef alongS(p^1 )fromX 4. Since
f 4 = f(X 4 ) =− 1. 0
f+= f(X 4 +εSp(^1 )) =f(− 0. 5 − 0. 005 , 1 + 0. 005 )
=f (− 0. 505 , 1. 005 )= − 1. 004975
f decreases in the positive direction ofS(p^1 ). As
f(X 4 +λSp(^1 )) =f(− 0. 5 − 0. 5 λ, 1. 0 + 0. 5 λ)
= 0. 25 λ^2 − 0. 50 λ− 1. 00 ,
df
dλ
=0 atλ∗= 1. 0 and hence
X 5 =X 4 +λ∗S(p^1 )=
{
−^12
1
}
+ 1. 0
{
−^12
1
2
}
=
{
− 1. 0
1. 5
}
The pointX 5 can be identified to be the optimum point.