Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

340 Nonlinear Programming II: Unconstrained Optimization Techniques


SOLUTION

Iteration 1
The gradient offis given by

∇f=

{

∂f/∂x 1
∂f/∂x 2

}

=

{

1 + 4 x 1 + 2 x 2
− 1 + 2 x 1 + 2 x 2

}

∇f 1 = ∇ f(X 1 )=

{

1

− 1

}

Therefore,
S 1 = −∇f 1 =

{

− 1

1

}

To findX 2 , we need to find the optimal step lengthλ∗ 1. For this, we minimizef(X 1 +
λ 1 S 1 ) =f(−λ 1 , λ 1 )=λ^21 − 2 λ 1 with respect toλ 1. Since df/dλ 1 = at 0 λ∗ 1 = , we 1
obtain

X 2 =X 1 +λ∗ 1 S 1 =

{

0

0

}

+ 1

{

− 1

1

}

=

{

− 1

1

}

As∇f 2 = ∇ f(X 2 )=

{

− 1

− 1

}


=


{

0

0

}

,X 2 is not optimum.

Iteration 2

S 2 = −∇f 2 =

{

1

1

}

To minimize
f (X 2 +λ 2 S 2 ) =f(− 1 +λ 2 , 1 +λ 2 )

= 5 λ^22 − 2 λ 2 − 1

we setdf/dλ 2 =. This gives 0 λ∗ 2 =^15 , and hence

X 3 =X 2 +λ∗ 2 S 2 =

{

− 1

1

}

+

1

5

{

1

1

}

=

{

− 0. 8

1. 2

}

Since the components of the gradient atX 3 ,∇f 3 =

{

0. 2

− 0. 2

}

,are not zero, we proceed
to the next iteration.

Iteration 3

S 3 = −∇f 3 =

{

− 0. 2

0. 2

}
Free download pdf