Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

362 Nonlinear Programming II: Unconstrained Optimization Techniques


To find the minimizing step lengthλ∗ 1 alongS 1 , we minimize

f(X 1 +λ 1 S 1 )=f

({

0

0

}

+λ 1

{

− 1

1

)}

=f (−λ 1 , λ 1 )=λ^21 − 2 λ 1

with respect toλ 1. Since df/dλ 1 = at 0 λ∗ 1 = , we obtain 1

X 2 =X 1 +λ∗ 1 S 1 =

{

0

0

}

+ 1

{

− 1

1

}

=

{

− 1

1

}

Since∇f 2 = ∇ f(X 2 )=

{− 1

− 1

}

and||∇f 2 || = 1. 4142 > ε, we proceed to update the
matrix [Bi] by computing

g 1 = ∇f 2 − ∇f 1 =

{

− 1

− 1

}


{

1

− 1

}

=

{

− 2

0

}

d 1 =λ∗ 1 S 1 = 1

{

− 1

1

}

=

{

− 1

1

}

d 1 dT 1 =

{

− 1

1

}

{−1 1} =

[

1 − 1

−1 1

]

dT 1 g 1 = {− 1 1 }

{

− 2

0

}

= 2

d 1 gT 1 =

{

− 1

1

}

{−2 0} =

[

2 0

−2 0

]

g 1 dT 1 =

{

− 2

0

}

{−1 1} =

[

2 − 2

0 0

]

gT 1 [B 1 ]g 1 = {− 2 0 }

[

1 0

0 1

]{

− 2

0

}

= {−2 0}

{

− 2

0

}

= 4

d 1 gT 1 [B 1 ]=

[

2 0

−2 0

][

1 0

0 1

]

=

[

2 0

−2 0

]

[B 1 ]g 1 dT 1 =

[

1 0

0 1

][

2 − 2

0 0

]

=

[

2 − 2

0 0

]

Equation (6.136) gives

[B 2 ] =|

[

1 0

0 1

]

+

(

1 +

4

2

)

1

2

[

1 − 1

−1 1

]


1

2

[

2 0

−2 0

]


1

2

[

2 − 2

0 0

]

=

[

1 0

0 1

]

+

[ 3

2 −

3
2
−^3232

]


[

1 0

−1 0

]


[

1 − 1

0 0

]

=

[ 1

2 −

1
2
−^1252

]
Free download pdf