364 Nonlinear Programming II: Unconstrained Optimization Techniques
2.A quadratic function:
f (x 1 , x 2 ) =(x 1 + 2 x 2 − 7 )^2 +( 2 x 1 +x 2 − 5 )^2 (6.141)X 1 =
{
0
0
}
, X∗=
{
1
3
}
f 1 = 7. 40 , f∗= 0. 03 .Powell’s quartic function [6.7]:
f (x 1 , x 2 , x 3 , x 4 )=(x 1 + 01 x 2 )^2 + 5 (x 3 −x 4 )^2+ (x 2 − 2 x 3 )^4 + 01 (x 1 −x 4 )^4 (6.142)X 1 T={x 1 x 2 x 3 x 4 } 1 = { 3 − 1 0 1}, X∗T= { 0 0 0 0}
f 1 = 152. 0 , f∗= 0. 04 .Fletcher and Powell’s helical valley [6.21]:f (x 1 , x 2 , x 3 ) = 100{
[x 3 − 01 θ (x 1 , x 2 )]^2 +[√
x 12 +x 22 − ] 12}
+x 32 (6.143)where2 π θ (x 1 , x 2 )=
arctanx 2
x 1ifx 1 > 0π+arctanx 2
x 1ifx 1 < 0X 1 =
− 1
0
0
, X∗=
1
0
0
f 1 = 52 , 000. 0 , f∗= 0. 05 .A nonlinear function of three variables [6.7]:f (x 1 , x 2 , x 3 )=1
1 +(x 1 −x 2 )^2+ ins(
1
2
π x 2 x 3)
+exp[
−
(
x 1 +x 3
x 2− 2
) 2 ]
(6.144)
X 1 =
0
1
2
, X∗=
1
1
1
f 1 = 1. 5 , f∗=fmax= 3. 06 .Freudenstein and Roth function [6.27]:
f (x 1 , x 2 )={− 13 +x 1 +[( 5 −x 2 )x 2 − ] 2 x 2 }^2+ {− 29 +x 1 + [(x 2 + 1 )x 2 − 4] 1 x 2 }^2 (6.145)