References and Bibliography 367
6.8 H. H. Rosenbrock, An automatic method for finding the greatest or least value of a
function,Computer Journal, Vol. 3, No. 3, pp. 175–184, 1960.
6.9 S. S. Rao,Optimization: Theory and Applications, 2nd ed., Wiley Eastern, New Delhi,
1984.
6.10 W. Spendley, G. R. Hext, and F. R. Himsworth, Sequential application of simplex designs
in optimization and evolutionary operation,Technometrics, Vol. 4, p. 441, 1962.
6.11 J. A. Nelder and R. Mead, A simplex method for function minimization,Computer Jour-
nal, Vol. 7, p. 308, 1965.
6.12 A. L. Cauchy, Methode g ́ en ́ ́erale pour la r ́esolution des systemes d’` equations simultan ́ ees, ́
Comptes Rendus de l’Academie des Sciences, Paris, Vol. 25, pp. 536–538, 1847.
6.13 R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients,Computer
Journal, Vol. 7, No. 2, pp. 149–154, 1964.
6.14 M. R. Hestenes and E. Stiefel,Methods of Conjugate Gradients for Solving Linear Sys-
tems, Report 1659, National Bureau of Standards, Washington, DC, 1952.
6.15 D. Marquardt, An algorithm for least squares estimation of nonlinear parameters,SIAM
Journal of Applied Mathematics, Vol. 11, No. 2, pp. 431–441, 1963.
6.16 C. G. Broyden, Quasi-Newton methods and their application to function minimization,
Mathematics of Computation, Vol. 21, p. 368, 1967.
6.17 C. G. Broyden, J. E. Dennis, and J. J. More, On the local and superlinear convergence of
quasi-Newton methods,Journal of the Institute of Mathematics and Its Applications, Vol.
12, p. 223, 1975.
6.18 H. Y. Huang, Unified approach to quadratically convergent algorithms for function min-
imization,Journal of Optimization Theory and Applications, Vol. 5, pp. 405–423, 1970.
6.19 J. E. Dennis, Jr., and J. J. More, Quasi-Newton methods, motivation and theory,SIAM
Review, Vol. 19, No. 1, pp. 46–89, 1977.
6.20 W. C. Davidon,Variable Metric Method of Minimization, Report ANL-5990, Argonne
National Laboratory, Argonne, IL, 1959.
6.21 R. Fletcher and M.J.D. Powell, A rapidly convergent descent method for minimization,
Computer Journal, Vol. 6, No. 2, pp. 163–168, 1963.
6.22 G. G. Broyden, The convergence of a class of double-rank minimization algorithms, Parts
I and II,Journal of the Institute of Mathematics and Its Applications, Vol. 6, pp. 76–90,
222-231, 1970.
6.23 R. Fletcher, A new approach to variable metric algorithms,Computer Journal, Vol. 13,
pp. 317–322, 1970.
6.24 D. Goldfarb, A family of variable metric methods derived by variational means,Mathe-
matics of Computation, Vol. 24, pp. 23–26, 1970.
6.25 D. F. Shanno, Conditioning of quasi-Newton methods for function minimization,Math-
ematics of Computation, Vol. 24, pp. 647–656, 1970.
6.26 M.J.D. Powell, An iterative method for finding stationary values of a function of several
variables,Computer Journal, Vol. 5, pp. 147–151, 1962.
6.27 F. Freudenstein and B. Roth, Numerical solution of systems of nonlinear equations,Jour-
nal of ACM, Vol. 10, No. 4, pp. 550–556, 1963.
6.28 M.J.D. Powell, A hybrid method for nonlinear equations, pp. 87–114 inNumerical Meth-
ods for Nonlinear Algebraic Equations, P. Rabinowitz, Ed., Gordon & Breach, New York,
1970.
6.29 J. J. More, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware,ACM Transactions on Mathematical Software, Vol. 7, No. 1, pp. 17–41, 1981.