24 Introduction to Optimization
that is,g 2 (X)=1250 π d^3
KsFD> 1 (E 3 )
natural frequency=√
Gg
2√
2 ρπd
D^2 N≥ 100
that is,g 3 (X)=√
Ggd
200√
2 ρπ D^2 N> 1 (E 4 )
Since the equality sign is not included (along with the inequality symbol,>) in the
constraints of Eqs. (E 2 ) to (E 4 ), the design variables are to be restricted to positive
values asd > 0 , D > 0 , N > 0 (E 5 )By substituting the known data,F=weight of the milling machine/4=1250 lb, ρ=
0 .3 lb/in^3 , G = 12 × 106 psi, andKs= 1. 0 5, Eqs. (E 1 ) to (E 4 ) becomef(X)=^14 π^2 ( 0. 3 )d^2 DN = 0. 7402 x 12 x 2 x 3 (E 6 )g 1 (X)=d^4 ( 21 × 106 )
80 ( 1250 )D^3 N= 120 x 14 x 2 −^3 x− 31 > 1 (E 7 )g 2 (X)=1250 π d^3
1. 05 ( 1250 )D= 2. 992 x 13 x− 21 > 1 (E 8 )g 3 (X)=√
Gg d
200√
2 ρπ D^2 N= 139. 8388 x 1 x− 22 x 3 −^1 > 1 (E 9 )It can be seen that the objective function,f (X), and the constraint functions,g 1 ( X)to
g 3 ( X),are posynomials and hence the problem is a GMP problem.Quadratic Programming Problem. A quadratic programming problem is a nonlinear
programming problem with a quadratic objective function and linear constraints. It is
usually formulated as follows:F (X)=c+∑ni= 1qixi+∑ni= 1∑nj= 1Qijxixj (1.9)subjectto
∑ni= 1aijxi=bj, j= 1 , 2 ,... , mxi≥ 0 , i= 1 , 2 ,... , nwherec, qi, Qij, aij, andbjare constants.