7.8 Rosen’s Gradient Projection Method 411
as
∇f (X 1 )=
{
2 x 1 − 2
2 x 2 − 4
}
X 1
=
{
0
− 2
}
The normalized search direction can be obtained as
S 1 =
1
[(− 0. 4707 )^2 + ( 0. 1177 )^2 ]^1 /^2
{
− 0. 4707
0. 1177
}
=
{
− 0. 9701
0. 2425
}
Step 5: SinceS 1 = 0 ,we go step 6.
Step 6: To find the step lengthλM, we set
X=
{
x 1
x 2
}
=X 1 +λS
=
{
1. 0 − 0. 9701 λ
1. 0 + 0. 2425 λ
}
Forj=2:
g 2 (X)=( 2. 0 − 1. 9402 λ)+( 3. 0 + 0. 7275 λ)− 6. 0 =0 at λ=λ 2
= − 0. 8245
Forj=3:
g 3 ( X)=−( 1. 0 − 0. 9701 λ)=0 at λ=λ 3 = 1. 03
Forj=4:
g 4 ( X)=−( 1. 0 + 0. 2425 λ)=0 at λ=λ 4 = − 4. 124
Therefore,
λM=λ 3 = 1. 03
Also,
f (X)=f (λ)=( 1. 0 − 0. 9701 λ)^2 +( 1. 0 + 0. 2425 λ)^2
− 2 ( 1. 0 − 0. 9701 λ)− 4 ( 1. 0 + 0. 2425 λ)
= 0. 9998 λ^2 − 0. 4850 λ− 4. 0
df
dλ
= 1. 9996 λ− 0. 4850
df
dλ
(λM )= 1. 9996 ( 1. 03 )− 0. 4850 = 1. 5746
Asdf/dλ(λM) , we compute the minimizing step length> 0 λ∗ 1 by setting
df/dλ=0. This gives
λ 1 =λ∗ 1 =