414 Nonlinear Programming III: Constrained Optimization Techniques
Consider the first variations of the objective and constraint functions:
df (X)=
∑n−l
i= 1
∂f
∂yi
dyi+
∑m+l
i= 1
∂f
∂zi
dzi= ∇TYf d Y+∇TZf dZ (7.94)
dgi(X)=
∑n−l
j= 1
∂gi
∂yj
dyj+
m∑+l
j= 1
∂gi
∂zj
dzj
or
dg=[C]dY+[D]dZ (7.95)
where
∇Yf=
∂f
∂y 1
∂f
∂y 2
..
.
∂f
∂yn−l
(7.96)
∇Zf=
∂f
∂z 1
∂f
∂z 2
..
.
∂f
∂zm+l
(7.97)
[C]=
∂g 1
∂y 1
· · ·
∂g 1
∂yn−l
..
.
..
.
∂gm+l
∂y 1
· · ·
∂gm+l
∂yn−l
(7.98)
[D]=
∂g 1
∂z 1
· · ·
∂g 1
∂zm+l
..
.
..
.
∂gm+l
∂z 1
· · ·
∂gm+l
∂zm+l