Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

414 Nonlinear Programming III: Constrained Optimization Techniques


Consider the first variations of the objective and constraint functions:

df (X)=

∑n−l

i= 1

∂f
∂yi

dyi+

∑m+l

i= 1

∂f
∂zi

dzi= ∇TYf d Y+∇TZf dZ (7.94)

dgi(X)=

∑n−l

j= 1

∂gi
∂yj

dyj+

m∑+l

j= 1

∂gi
∂zj

dzj

or
dg=[C]dY+[D]dZ (7.95)

where

∇Yf=


























∂f
∂y 1
∂f
∂y 2
..
.
∂f
∂yn−l


























(7.96)

∇Zf=


























∂f
∂z 1
∂f
∂z 2
..
.
∂f
∂zm+l


























(7.97)

[C]=

       

∂g 1
∂y 1

· · ·

∂g 1
∂yn−l
..
.

..

.

∂gm+l
∂y 1

· · ·

∂gm+l
∂yn−l

       

(7.98)

[D]=

       

∂g 1
∂z 1

· · ·

∂g 1
∂zm+l
..
.

..

.

∂gm+l
∂z 1

· · ·

∂gm+l
∂zm+l

       

(7.99)
Free download pdf