418 Nonlinear Programming III: Constrained Optimization Techniques
If the vectorXnewcorresponding toλ∗is found infeasible, thenYnewis held
constant andZnewis modified using Eq. (7.108) withdZ=Znew−Zold.
Finally, when convergence is achieved with Eq. (7.108), we find thatXnew={
Yold+ Y
Zold+ Z}
(7.116)
and go to step 1.Example 7.4Minimizef (x 1 , x 2 , x 3 )=(x 1 −x 2 )^2 + (x 2 −x 3 )^4subject to
g 1 (X)=x 1 ( 1 +x^22 )+x 34 − 3 = 0− 3 ≤xi≤ 3 , i= 1 , 2 , 3using the GRG method.SOLUTIONStep 1: We choose arbitrarily the independent and dependent variables asY=
{
y 1
y 2}
=
{
x 1
x 2}
, Z={z 1 } = {x 3 }Let the starting vector beX 1 =
− 2. 6
2
2
withf (X 1 ) = 21 .16.
Step 2: Compute the GRG atX 1. Noting that
∂f
∂x 1= 2 (x 1 −x 2 )∂f
∂x 2= − 2 (x 1 −x 2 ) + 4 (x 2 −x 3 )^3∂f
∂x 3= − 4 (x 2 −x 3 )^3∂g 1
∂x 1= 1 +x^22∂g 1
∂x 2= 2 x 1 x 2∂g 1
∂x 3= 4 x 33