Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

420 Nonlinear Programming III: Constrained Optimization Techniques


(b) The upper bound onλis given by the smaller ofλ 1 andλ 2 , which is equal
to 0.5435. By expressing

X=

{

Y+λS
Z+λT

}

we obtain

X=




x 1
x 2
x 3




=




− 2. 6

2

2








9. 2

− 9. 2

− 4. 4275




=




− 2. 6 + 9. 2 λ
2 − 9. 2 λ
2 − 4. 4275 λ




and hence

f (λ)=f (X)=(− 2. 6 + 9. 2 λ− 2 + 9. 2 λ)^2

+( 2 − 9. 2 λ− 2 + 4. 4275 λ)^4

= 185. 7806 λ^4 + 383. 56 λ^2 − 691. 28 λ+ 21. 16

df/dλ=0 gives

2075. 1225 λ^3 + 776. 12 λ− 169. 28 = 0

from which we find the root asλ∗≈ 0. 2 2. Sinceλ∗is less than the upper
bound value 0.5435, we useλ∗.
(c) The new vectorXnewis given by

Xnew=

{

Yold+dY
Zold+dZ

}

=

{

Yold+λ∗S
Zold+λ∗T

}

=








− 2. 6 + 0. 22 ( 9. 2 )

2 + 0. 22 (− 9. 2 )

2 + 0. 22 (− 4. 4275 )








=








− 0. 576

− 0. 024

1. 02595








with
dY=

{

2. 024

− 2. 024

}

, dZ= {− 0. 97405 }

Now, we need to check whether this vector is feasible. Since

g 1 (Xnew )=(− 0. 576 )[1+(− 0. 024 )^2 ] +( 1. 02595 )^4 − 3 =− 2. 4684 = 0

the vectorXnewis infeasible. Hence we holdYnewconstant and modify
Znewusing Newton’s method [Eq. (7.108)] as

dZ=[D]−^1 [−g(X)−[C]dY]
Free download pdf