7.9 Generalized Reduced Gradient Method 421
Since
[D]=
[
∂g 1
∂z 1
]
=[ 4 x^33 ] =[ 4 ( 1. 02595 )^3 ] =[ 4 .319551]
g 1 ( X)={− 2. 4684 }
[C]=
[
∂g 1
∂y 1
∂g 1
∂y 2
]
={[2(− 0. 576 + 0. 024 )][− 2 (− 0. 576 + 0. 024 )
+ 4 (− 0. 024 − 1. 02595 )^3 ]}
=[− 1. 104 − 3. 5258 ]
dZ=
1
4. 319551
[
2. 4684 − {− 1. 104 − 3. 5258 }
×
{
2. 024
− 2. 024
}]
= {− 0. 5633 }
we haveZnew=Zold+ dZ={ 2 − 0. 5633 } = { 1. 4367 }. The currentXnew
becomes
Xnew=
{
Yold+dY
Zold+dZ
}
=
− 0. 576
− 0. 024
1. 4367
The constraint becomes
g 1 = (− 0. 576 )( 1 −(− 0. 024 )^2 ) +( 1. 4367 )^4 − 3 = 0. 6842 = 0
Since this Xnew is infeasible, we need to apply Newton’s method
[Eq. (7.108)] at the currentXnew. In the present case, instead of repeating
Newton’s iteration, we can find the value ofZnew= {x 3 }newby satisfying
theconstraint as
g 1 (X)=(− 0. 576 )[1+(− 0. 024 )^2 ]+x 34 − 3 = 0
or x 3 = ( 2. 4237 )^0 5.^2 = 1. 2477
This gives
Xnew=
− 0. 576
− 0. 024
1. 2477
and
f (Xnew) =(− 0. 576 + 0. 024 )^2 + (− 0. 024 − 1. 2477 )^4 = 2. 9201
Next we go to step 1.
Step 1: We do not have to change the set of independent and dependent variables and
hence we go to the next step.