440 Nonlinear Programming III: Constrained Optimization Techniques
Proof: IfX∗is the optimum solution of the constrained problem, we have toprove
thatlim
rk→ 0[min φ(X, rk )]=φ(X∗k, rk) =f(X∗) (7.177)Sincef (X)is continous andf (X∗) ≤f(X)for all feasible pointsX, we can choose
feasible point
̃Xsuch thatf (
̃X) < f (X∗)+ε
2(7.178)
for any value ofε>0. Next select a suitable value ofk, sayK, such thatrk≤{
ε
2 m/
min
j[
−
1
gj(
̃X)
]}
(7.179)
From the definition of theφfunction, we havef (X∗) ≤minφ(X, rk) =φ(X∗k, rk) (7.180)whereX∗kis the unconstrained minimum ofφ(X, rk) Further,.φ(X∗k, rk) ≤φ(X∗K, rk) (7.181)sinceX∗kminimizesφ(X,rk) nd anya Xother thanX∗kleads to a value ofφgreater
than or equal toφ(X∗k, rk) Further, by choosing. rk< rK, we obtainφ(X∗K, rK) =f(X∗K)−rK∑mj= 11
gj(X∗K)>f (X∗K)−rk∑mj= 11
gj(X∗K)>φ(X∗k, rk) (7.182)asX∗kis the unconstrained minimum ofφ(X, rk) Thus.f (X∗) ≤φ(X∗k, rk) ≤φ(X∗K, rk) < φ(X∗K, rK) (7.183)But
φ(X∗K, rK) ≤φ(
̃X, rK) =f(
̃X)−rK∑mj= 11
gj(
̃X)
(7.184)
Combining the inequalities (7.183) and (7.184), we havef (X∗)≤ φ(X∗k, rk) ≤f(
̃X)−rK∑mj= 11
gj(
̃X)
(7.185)
Inequality (7.179) gives−rK∑mj= 11
gj(
̃X)
<
ε
2