Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1
8.6 Primal–Dual Relationship and Sufficiency Conditions in the Unconstrained Case 503

where


w=










w 0
w 1
..
.
wn










, =










 1

 2

..

.

N










, λ=










λ 0
λ 1
..
.
λN










(8.37)

withλdenoting the vector of Lagrange multipliers. At the stationary point ofL, we
have


∂L
∂wi

= 0 , i= 0 , 1 , 2 ,... , n

∂L
∂j

= 0 , j= 1 , 2 ,... , N

∂L
∂λi

= 0 , i= 0 , 1 , 2 ,... , N

(8.38)

These equations yield the following relations:


1 −

∑N

j= 1

λj= 0 or

∑N

j= 1

λj= 1 (8.39)

∑N

j= 1

λjaij= 0 , i= 1 , 2 ,... , n (8.40)

λ 0 −

λj
j

= 0 or λ 0 =

λj
j

, j= 1 , 2 ,... , N (8.41)

∑N

j= 1

j− 1 = 0 or

∑N

j= 1

j= 1 (8.42)

−ln

j
cj

+

∑n

i= 1

aijwi−w 0 = 0 , j= 1 , 2 ,... , N (8.43)

Equations (8.39), (8.41), and (8.42) give the relation


∑N

j= 1

λj= 1 =

∑N

j= 1

λ 0 j=λ 0

∑N

j= 1

j=λ 0 (8.44)

Thus the values of the Lagrange multipliers are given by


λj=

{

1 for j= 0
j for j= 1 , 2 ,... , N

(8.45)
Free download pdf