8.6 Primal–Dual Relationship and Sufficiency Conditions in the Unconstrained Case 503
where
w=
w 0
w 1
..
.
wn
, =
1
2
..
.
N
, λ=
λ 0
λ 1
..
.
λN
(8.37)
withλdenoting the vector of Lagrange multipliers. At the stationary point ofL, we
have
∂L
∂wi
= 0 , i= 0 , 1 , 2 ,... , n
∂L
∂j
= 0 , j= 1 , 2 ,... , N
∂L
∂λi
= 0 , i= 0 , 1 , 2 ,... , N
(8.38)
These equations yield the following relations:
1 −
∑N
j= 1
λj= 0 or
∑N
j= 1
λj= 1 (8.39)
∑N
j= 1
λjaij= 0 , i= 1 , 2 ,... , n (8.40)
λ 0 −
λj
j
= 0 or λ 0 =
λj
j
, j= 1 , 2 ,... , N (8.41)
∑N
j= 1
j− 1 = 0 or
∑N
j= 1
j= 1 (8.42)
−ln
j
cj
+
∑n
i= 1
aijwi−w 0 = 0 , j= 1 , 2 ,... , N (8.43)
Equations (8.39), (8.41), and (8.42) give the relation
∑N
j= 1
λj= 1 =
∑N
j= 1
λ 0 j=λ 0
∑N
j= 1
j=λ 0 (8.44)
Thus the values of the Lagrange multipliers are given by
λj=
{
1 for j= 0
j for j= 1 , 2 ,... , N