8.6 Primal–Dual Relationship and Sufficiency Conditions in the Unconstrained Case 503where
w=
w 0
w 1
..
.
wn
, =
1
2
..
.
N
, λ=
λ 0
λ 1
..
.
λN
(8.37)
withλdenoting the vector of Lagrange multipliers. At the stationary point ofL, we
have
∂L
∂wi= 0 , i= 0 , 1 , 2 ,... , n∂L
∂j= 0 , j= 1 , 2 ,... , N∂L
∂λi= 0 , i= 0 , 1 , 2 ,... , N(8.38)
These equations yield the following relations:
1 −
∑N
j= 1λj= 0 or∑N
j= 1λj= 1 (8.39)∑N
j= 1λjaij= 0 , i= 1 , 2 ,... , n (8.40)λ 0 −λj
j= 0 or λ 0 =λj
j, j= 1 , 2 ,... , N (8.41)∑N
j= 1j− 1 = 0 or∑N
j= 1j= 1 (8.42)−lnj
cj+
∑ni= 1aijwi−w 0 = 0 , j= 1 , 2 ,... , N (8.43)Equations (8.39), (8.41), and (8.42) give the relation
∑N
j= 1λj= 1 =∑N
j= 1λ 0 j=λ 0∑N
j= 1j=λ 0 (8.44)Thus the values of the Lagrange multipliers are given by
λj={
1 for j= 0
j for j= 1 , 2 ,... , N