8.6 Primal–Dual Relationship and Sufficiency Conditions in the Unconstrained Case 507
Since lnvis expressed as a function of 4 alone, the value of 4 that maximizes lnv
mustbe unique (because the primal problem has a unique solution). The necessary
condition for the maximum of lnvgives
∂
∂ 4
( nl v)= −11[ln 100−ln( 2 − 11 4 ) ]+( 2 − 11 4 )
11
2 − 11 4
+ [ln 50 8 −ln( 8 4 − 1 )]+( 8 4 − 1 )
(
−
8
8 4 − 1
)
+ 2 [ln 20−ln( 2 4 )]+ 2 4
(
−
2
2 4
)
+ 1 [ln 300−ln( 4 )]+ 4
(
−
1
4
)
= 0
This gives after simplification
ln
( 2 − 11 4 )^11
( 8 4 − 1 )^8 ( 2 4 )^2 4
− nl
( 100 )^11
( 50 )^8 ( 02 )^2 ( 003 )
= 0
i.e.,
( 2 − 11 4 )^11
( 8 4 − 1 )^8 ( 2 4 )^2 4
=
( 100 )^11
( 50 )^8 ( 02 )^2 ( 003 )
= 2130 (E 3 )
from which the value of∗ 4 can be obtained by using a trial-and-error process as
follows:
Value of∗ 4 Value of left-hand side of Eq. (E 3 )
2 / 11 = 0. 182 0.0
0.15
( 0. 35 )^11
( 0. 2 )^8 ( 0. 3 )^2 ( 0. 15 )
≃ 284
0.147
( 0. 385 )^11
( 0. 175 )^8 ( 0. 294 )^2 ( 0. 147 )
≃ 2210
0.146
( 0. 39 )^11
( 0. 169 )^8 ( 0. 292 )^2 ( 0. 146 )
≃ 4500
Thus we find that∗ 4 ≃ 0. 1 47, and Eqs. (E 2 ) iveg
∗ 1 = 2 − 11 ∗ 4 = 0. 385
∗ 2 = 8 ∗ 4 − 1 = 0. 175
∗ 3 = 2 ∗ 4 = 0. 294
The optimal value of the objective function is given by
v∗=f∗=