508 Geometric Programming
The optimum values of the design variables can be found from
U 1 ∗=∗ 1 f∗= ( 0. 385 )( 242 )= 92. 2
U 2 ∗=∗ 2 f∗= ( 0. 175 )( 242 )= 42. 4
U 3 ∗=∗ 3 f∗= ( 0. 294 )( 242 )= 71. 1
U 4 ∗=∗ 4 f∗= ( 0. 147 )( 242 )= 35. 6
(E 4 )
From Eqs. (E 1 ) nd (Ea 4 ) we have,
U 1 ∗= 001 D∗= 29. 2
U 2 ∗= 05 D∗^2 = 24. 4
U 3 ∗=
20
Q∗
= 17. 1
U 4 ∗=
300 Q∗^2
D∗^5
= 53. 6
These equations can be solved to find the desired solutionD∗= 0. 9 22 cm,Q∗=
0. 2 81 m^3 /s.
8.7 Constrained Minimization
Most engineering optimization problems are subject to constraints. If the objective
function and all the constraints are expressible in the form of posynomials, geometric
programming can be used most conveniently to solve the optimization problem. Let
the constrained minimization problem be stated as
FindX=
x 1
x 2
..
.
xn
which minimizes the objective function
f (X)=
∑N^0
j= 1
c 0 j
∏n
i= 1
x
a 0 ji
i (8.52)
and satisfies the constraints
gk(X)=
∑Nk
j= 1
ckj
∏n
i= 1
x
akij
i ⋚^1 , k=^1 ,^2 ,... , m (8.53)
where the coefficientsc 0 j (j= 1 , 2 ,... , N 0 ) nda ckj (k = 1 , 2 ,... , m; j= 1 , 2 ,
... , Nk) re positive numbers, the exponentsa a 0 ji (i = 1 , 2 ,... , n;j= 1 , 2 ,... , N 0 )