8.9 Primal and Dual Programs in the Case of Less-Than Inequalities 517
λ 12 =λ 01 −λ 03 −λ 11 (E 7 )
λ 12 = 2 λ 11 −λ 02 (E 8 )
From Eqs. (E 7 ) nd (Ea 8 ) we have,
λ 12 =λ 01 −λ 03 −λ 11 = 2 λ 11 −λ 02
3 λ 11 −λ 02 +λ 03 =λ 01 (E 9 )
Adding Eqs. (E 5 ) nd (Ea 9 ) we obtain,
λ 21 = 4 λ 11 − 2 λ 01 (E 10 )
= 3 λ 02 − 2 λ 01 from Eq.(E 6 )
λ 11 =^34 λ 02 (E 11 )
Substitution of Eq. (E 11 ) n Eq. (Ei 8 ) ivesg
λ 12 =^32 λ 02 −λ 02 =^12 λ 02 (E 12 )
Equations(E 11 ) (E, 12 ) and (E, 7 ) iveg
λ 03 =λ 01 −λ 11 −λ 12 =λ 01 −^34 λ 02 −^12 λ 02 =λ 01 −^54 λ 02 (E 13 )
By substituting forλ 03 , Eq. (E 4 ) ivesg
λ 02 = 8 λ 01 − 4 (E 14 )
Using this relation forλ 02 , the expressions forλ 03 , λ 11 , λ 12 , andλ 21 can be obtained
as
λ 03 =λ 01 −^54 λ 02 = − 9 λ 01 + 5 (E 15 )
λ 11 =^34 λ 02 = 6 λ 01 − 3 (E 16 )
λ 12 =^12 λ 02 = 4 λ 01 − 2 (E 17 )
λ 21 = 4 λ 11 − 2 λ 01 = 22 λ 01 − 21 (E 18 )
Thus the objective function in Eq. (E 2 ) an be stated in terms ofc λ 01 as
v(λ 01 )=
(
1
λ 01
)λ 01 (
2
8 λ 01 − 4
) 8 λ 01 − 4 (
10
5 − 9 λ 01
) 5 − 9 λ 01
×
(
30 λ 01 − 51
6 λ 01 − 3
) 6 λ 01 − 3 (
40 λ 01 − 02
4 λ 01 − 2
) 4 λ 01 − 2
( 5 )^22 λ^01 −^21
=
(
1
λ 01
)λ 01 (
1
4 λ 01 − 2
) 8 λ 01 − 4 (
10
5 − 9 λ 01
) 5 − 9 λ 01
×( 5 )^6 λ^01 −^3 ( 01 )^4 λ^01 −^2 ( 5 )^22 λ^01 −^21
=
(
1
λ 01
)λ 01 (
1
4 λ 01 − 2
) 8 λ 01 − 4 (
10
5 − 9 λ 01
) 5 − 9 λ 01
( 5 )^32 λ^01 −^71 ( 2 )^4 λ^01 −^2