Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1
9.8 Linear Programming as a Case of Dynamic Programming 571

whereβ 1 ,β 2 , andβ 3 are the resources available for allocation at stage 1, andx 1 is a
nonnegative value that satisfies the side constraints 10x 1 ≤β 1 , 4x 1 ≤β 2 , andx 1 ≤β 3.
Hereβ 1 = 5002 − 5 x 2 ,β 2 = 0002 − 10 x 2 , andβ 3 = 504 − 1. 5 x 2 , and hence the max-
imum valueβthatx 1 can assume is given by


β=x∗ 1 = inm

[

2500 − 5 x 2
10

,

2000 − 10 x 2
4

, 450 − 1. 5 x 2

]

(E 1 )

Thus


f 1 ∗

(

2500 − 5 x 2
10

,

2000 − 10 x 2
4

, 450 − 1. 5 x 2

)

= 50 x 1 ∗

= 0 min 5

(

2500 − 5 x 2
10

,

2000 − 10 x 2
4

, 450 − 1. 5 x 2

)

The second-stage problem is to find the maximum value off 2 :


maxf 2 (β 1 , β 2 , β 3 ) = max
0 ≤x 2 ≤β

[

100 x 2 +f 1 ∗

(

2500 − 5 x 2
10

,

2000 − 10 x 2
4

, 450 − 1. 5 x 2

)]

(E 2 )

whereβ 1 ,β 2 , andβ 3 are the resources available for allocation at stage 2, which are
equal to 2500, 2000, and 450, respectively. The maximum value thatx 2 can assume
without violating any constraint is given by


β=min

(

2500

5

,

2000

10

,

450

1. 5

)

= 200

Thus the recurrence relation, Eq. (E 2 ) can be restated as,


maxf 2 ( 5002 , 2000 , 450 )

= max
0 ≤x 2 ≤ 002

{

100 x 2 + 0 min 5

(

2500 − 5 x 2
10

,

2000 − 10 x 2
4

, 450 − 1. 5 x 2

)}

Since


min

(

2500 − 5 x 2
10

,

2000 − 10 x 2
4

, 450 − 1. 5 x 2

)

=








2500 − 5 x 2
10

if 0≤x 2 ≤ 251

2000 − 10 x 2
4

if 125≤x 2 ≤ 002
Free download pdf