616 Integer Programming
Figure 10.8 Solution of the welded beam problem using branch-and-bound method. [10.25]
The problem stated in Eqs. (10.57) to (10.62) cannot be solved using mixed-integer
linear programming techniques since some of the design variables are discrete and
noninteger. The discrete variables are redefined as [10.26]
xi=yi 1 di 1 +yi 2 di 2 + · · · +yiqdiq=
∑q
j= 1
yijdij, i= 1 , 2 ,... , n 0 (10.63)
with
yi 1 +yi 2 + · · · +yiq=
∑q
j= 1
yij= 1 (10.64)
yij= or 1 0 , i= 1 , 2 ,... , n 0 , j= 1 , 2 ,... , q (10.65)
Using Eqs. (10.63) to (10.65) in Eqs. (10.57) to (10.62), we obtain
Minimizef (X)≈f (X^0 )+
∑n^0
i= 1
∂f
∂xi
∑q
j= 1
yijdij−x^0 i
+
∑n
i=n 0 + 1
∂f
∂xi
(xi−xi^0 ) (10.66)