Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1
Problems 631

10.20 Find the solution of the following problem using a graphical method based on the
generalized penalty function approach:


Minimizef=x

subject to
x− 1 ≥0 with x= { 1 , 2 , 3 ,.. .}

Select suitable values ofrkandskto construct theφkfunction.

10.21 Find the solution of the following binary programming problem using the MATLAB
functionbintprog:


MinimizefTxsubject toAx≤bandAeq x=beq

where

A=







−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1






, b=








0 0 0 0 0 0







Aeq=[1 1 1 1 1 1 1 1 1] andbeq= { 5 }

10.22 Find the solution of the following binary programming problem using the MATLAB
functionbintprog:
MinimizefTxsubject toAx≤b


where
fT= {−^2 −^3 −^1 −^4 −^3 −^2 −^2 −^1 −^3 }

x= {x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 }T

A=






0 −3 0− 1 −1 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 0 1 − 1 −1 0 0 0
0 −1 0 0 0 − 2 − 3 − 1 − 2
0 0−1 0 2 1 2 −2 1






, b=








− 3
1
− 1
− 4
5







Free download pdf