11.2 Basic Concepts of Probability Theory 637
Figure 11.2 Two density functions with same mean.
SOLUTION
X=
∑^6
i= 0
xipX(xi) = 0 ( 0. 02 )+ 1 ( 0. 15 )+ 2 ( 0. 22 )+ 3 ( 0. 26 )
+ 4 ( 0. 17 )+ 5 ( 0. 14 )+ 6 ( 0. 04 )
= 2. 99
X^2 =
∑^6
i= 0
x^2 ipX(xi) = 0 ( 0. 02 )+ 1 ( 0. 15 )+ 4 ( 0. 22 )+ 9 ( 0. 26 )
+ 16 ( 0. 17 )+ 25 ( 0. 14 )+ 36 ( 0. 04 )
= 11. 03
Thus
σX^2 =X^2 −(X)^2 = 11. 03 −( 2. 99 )^2 = 2. 0 899 or σX= 1. 4456
Example 11.3 The force applied on an engine brake (X)is given by
fX(x)=
x
48
, 0 ≤x≤8 lb
12 −x
24
, 8 ≤x≤12 lb
Determine the mean and standard deviation of the force applied on the brake.
SOLUTION
μX=E[X]=
∫∞
−∞
xfX(x) dx=
∫ 8
0
x
x
48
dx+
∫ 12
8
x
12 −x
24
dx= 6. 6667
E[X^2 ]=
∫∞
−∞
x^2 fX(x) dx=
∫ 8
0
x^2
x
48
dx+
∫ 12
8
x^2
12 −x
24
dx