11.2 Basic Concepts of Probability Theory 637Figure 11.2 Two density functions with same mean.SOLUTION
X=
∑^6
i= 0xipX(xi) = 0 ( 0. 02 )+ 1 ( 0. 15 )+ 2 ( 0. 22 )+ 3 ( 0. 26 )+ 4 ( 0. 17 )+ 5 ( 0. 14 )+ 6 ( 0. 04 )
= 2. 99
X^2 =
∑^6
i= 0x^2 ipX(xi) = 0 ( 0. 02 )+ 1 ( 0. 15 )+ 4 ( 0. 22 )+ 9 ( 0. 26 )+ 16 ( 0. 17 )+ 25 ( 0. 14 )+ 36 ( 0. 04 )
= 11. 03
Thus
σX^2 =X^2 −(X)^2 = 11. 03 −( 2. 99 )^2 = 2. 0 899 or σX= 1. 4456
Example 11.3 The force applied on an engine brake (X)is given by
fX(x)=
x
48, 0 ≤x≤8 lb12 −x
24, 8 ≤x≤12 lbDetermine the mean and standard deviation of the force applied on the brake.
SOLUTION
μX=E[X]=∫∞
−∞xfX(x) dx=∫ 8
0xx
48dx+∫ 12
8x12 −x
24dx= 6. 6667E[X^2 ]=
∫∞
−∞x^2 fX(x) dx=∫ 8
0x^2x
48dx+∫ 12
8x^212 −x
24dx